Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars

Flowering is an important agronomic trait that presents non-additive gene action. Genome-enabled prediction allow incorporating molecular information into the prediction of individual genetic merit. Artificial neural networks (ANN) recognize patterns of data and represent an alternative as a univers...

Full description

Bibliographic Details
Main Authors: Renato Domiciano Silva Rosado, Cosme Damião Cruz, Leiri Daiane Barili, José Eustáquio de Souza Carneiro, Pedro Crescêncio Souza Carneiro, Vinicius Quintão Carneiro, Jackson Tavela da Silva, Moyses Nascimento
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/10/12/638
Description
Summary:Flowering is an important agronomic trait that presents non-additive gene action. Genome-enabled prediction allow incorporating molecular information into the prediction of individual genetic merit. Artificial neural networks (ANN) recognize patterns of data and represent an alternative as a universal approximation of complex functions. In a Genomic Selection (GS) context, the ANN allows automatically to capture complicated factors such as epistasis and dominance. The objectives of this study were to predict the individual genetic merits of the traits associated with the flowering time in the common bean using the ANN approach, and to compare the predictive abilities obtained for ANN and Ridge Regression Best Linear Unbiased Predictor (RR-BLUP). We used a set of 80 bean cultivars and genotyping was performed with a set of 384 SNPs. The higher accuracy of the selective process of phenotypic values based on ANN output values resulted in a greater efficacy of the genomic estimated breeding value (GEBV). Through the root mean square error computational intelligence approaches via ANN, GEBV were shown to have greater efficacy than GS via RR-BLUP.
ISSN:2077-0472