Recent breakthroughs in scanning transmission electron microscopy of small species

Over the last decade, scanning transmission electron microscopy has become one of the most powerful tools to characterise nanomaterials at the atomic scale. Often, the ultimate goal is to retrieve the three-dimensional structure, which is very challenging since small species are typically sensitive...

Full description

Bibliographic Details
Main Authors: Karel Hendrik Wouter van den Bos, Thomas Altantzis, Annick De Backer, Sandra Van Aert, Sara Bals
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:Advances in Physics: X
Subjects:
Online Access:http://dx.doi.org/10.1080/23746149.2018.1480420
Description
Summary:Over the last decade, scanning transmission electron microscopy has become one of the most powerful tools to characterise nanomaterials at the atomic scale. Often, the ultimate goal is to retrieve the three-dimensional structure, which is very challenging since small species are typically sensitive to electron irradiation. Nevertheless, measuring individual atomic positions is crucial to understand the relation between the structure and physicochemical properties of these (nano)materials. In this review, we highlight the latest approaches that are available to reveal the 3D atomic structure of small species. Finally, we will provide an outlook and will describe future challenges where the limits of electron microscopy will be pushed even further.
ISSN:2374-6149