Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia
Temperate forests provide crucial ecosystems services as living sinks for atmospheric carbon (C) and repositories of biodiversity. Applying harvesting at intensities that minimize losses offers one means for mitigating global change. However, little is known of overstory retention levels that best c...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-07-01
|
Series: | Frontiers in Forests and Global Change |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/ffgc.2020.00088/full |
id |
doaj-830eae6843bd40c9a72ebae176735009 |
---|---|
record_format |
Article |
spelling |
doaj-830eae6843bd40c9a72ebae1767350092020-11-25T01:26:52ZengFrontiers Media S.A.Frontiers in Forests and Global Change2624-893X2020-07-01310.3389/ffgc.2020.00088543684Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British ColumbiaSuzanne W. Simard0W. Jean Roach1Camille E. Defrenne2Brian J. Pickles3Eva N. Snyder4Alyssa Robinson5Les M. Lavkulich6Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, CanadaDepartment of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, CanadaEnvironmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, United StatesSchool of Biological Sciences, University of Reading, Reading, United KingdomDepartment of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, CanadaDepartment of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, CanadaFaculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, CanadaTemperate forests provide crucial ecosystems services as living sinks for atmospheric carbon (C) and repositories of biodiversity. Applying harvesting at intensities that minimize losses offers one means for mitigating global change. However, little is known of overstory retention levels that best conserve ecosystem services in different regional climates, and likewise as climate changes. To quantify the effect of harvest intensity on C stocks and biodiversity, we compared five harvesting intensities (clearcutting, seedtree retention, 30% patch retention, 60% patch retention, and uncut controls) across a climatic aridity gradient that ranged from humid to semi-arid in the Douglas-fir (Pseudotsuga menziesii) forests of British Columbia. We found that increased harvesting intensity reduced total ecosystem, aboveground, and live tree C stocks 1 year post-harvest, and the magnitude of these losses were negatively correlated with climatic aridity. In humid forests, total ecosystem C ranged from 50% loss following clearcut harvest, to 30% loss following large patch retention harvest. In arid forests this range was 60 to 8% loss, respectively. Where lower retention harvests are sought, the small patch retention treatment protected both C stocks and biodiversity in the arid forests, whereas the seedtree method performed as well or better in the humid forests. Belowground C stocks declined by an average of 29% after harvesting, with almost all of the loss from the forest floor and none from the mineral soil. Of the secondary pools, standing and coarse deadwood declined in all harvesting treatments regardless of cutting intensity or aridity, while C stocks in fine fuels and stumps increased. The understory plant C pool declined across all harvesting intensities in the humid forests, but increased in arid forests. Shannon’s diversity and richness of tree and bryoid species declined with harvesting intensity, where tree species losses were greatest in the humid forests and bryoid losses greatest in arid forests. Shrub and herb species were unaffected. This study showed that the highest retention level was best at reducing losses in C stocks and biodiversity, and clearcutting the poorest, and while partial retention of canopy trees can reduce losses in these ecosystem services, outcomes will vary with climatic aridity.https://www.frontiersin.org/article/10.3389/ffgc.2020.00088/fullregional climateariditybiodiversitycarbonglobal changeharvesting intensity |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Suzanne W. Simard W. Jean Roach Camille E. Defrenne Brian J. Pickles Eva N. Snyder Alyssa Robinson Les M. Lavkulich |
spellingShingle |
Suzanne W. Simard W. Jean Roach Camille E. Defrenne Brian J. Pickles Eva N. Snyder Alyssa Robinson Les M. Lavkulich Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia Frontiers in Forests and Global Change regional climate aridity biodiversity carbon global change harvesting intensity |
author_facet |
Suzanne W. Simard W. Jean Roach Camille E. Defrenne Brian J. Pickles Eva N. Snyder Alyssa Robinson Les M. Lavkulich |
author_sort |
Suzanne W. Simard |
title |
Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia |
title_short |
Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia |
title_full |
Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia |
title_fullStr |
Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia |
title_full_unstemmed |
Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia |
title_sort |
harvest intensity effects on carbon stocks and biodiversity are dependent on regional climate in douglas-fir forests of british columbia |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Forests and Global Change |
issn |
2624-893X |
publishDate |
2020-07-01 |
description |
Temperate forests provide crucial ecosystems services as living sinks for atmospheric carbon (C) and repositories of biodiversity. Applying harvesting at intensities that minimize losses offers one means for mitigating global change. However, little is known of overstory retention levels that best conserve ecosystem services in different regional climates, and likewise as climate changes. To quantify the effect of harvest intensity on C stocks and biodiversity, we compared five harvesting intensities (clearcutting, seedtree retention, 30% patch retention, 60% patch retention, and uncut controls) across a climatic aridity gradient that ranged from humid to semi-arid in the Douglas-fir (Pseudotsuga menziesii) forests of British Columbia. We found that increased harvesting intensity reduced total ecosystem, aboveground, and live tree C stocks 1 year post-harvest, and the magnitude of these losses were negatively correlated with climatic aridity. In humid forests, total ecosystem C ranged from 50% loss following clearcut harvest, to 30% loss following large patch retention harvest. In arid forests this range was 60 to 8% loss, respectively. Where lower retention harvests are sought, the small patch retention treatment protected both C stocks and biodiversity in the arid forests, whereas the seedtree method performed as well or better in the humid forests. Belowground C stocks declined by an average of 29% after harvesting, with almost all of the loss from the forest floor and none from the mineral soil. Of the secondary pools, standing and coarse deadwood declined in all harvesting treatments regardless of cutting intensity or aridity, while C stocks in fine fuels and stumps increased. The understory plant C pool declined across all harvesting intensities in the humid forests, but increased in arid forests. Shannon’s diversity and richness of tree and bryoid species declined with harvesting intensity, where tree species losses were greatest in the humid forests and bryoid losses greatest in arid forests. Shrub and herb species were unaffected. This study showed that the highest retention level was best at reducing losses in C stocks and biodiversity, and clearcutting the poorest, and while partial retention of canopy trees can reduce losses in these ecosystem services, outcomes will vary with climatic aridity. |
topic |
regional climate aridity biodiversity carbon global change harvesting intensity |
url |
https://www.frontiersin.org/article/10.3389/ffgc.2020.00088/full |
work_keys_str_mv |
AT suzannewsimard harvestintensityeffectsoncarbonstocksandbiodiversityaredependentonregionalclimateindouglasfirforestsofbritishcolumbia AT wjeanroach harvestintensityeffectsoncarbonstocksandbiodiversityaredependentonregionalclimateindouglasfirforestsofbritishcolumbia AT camilleedefrenne harvestintensityeffectsoncarbonstocksandbiodiversityaredependentonregionalclimateindouglasfirforestsofbritishcolumbia AT brianjpickles harvestintensityeffectsoncarbonstocksandbiodiversityaredependentonregionalclimateindouglasfirforestsofbritishcolumbia AT evansnyder harvestintensityeffectsoncarbonstocksandbiodiversityaredependentonregionalclimateindouglasfirforestsofbritishcolumbia AT alyssarobinson harvestintensityeffectsoncarbonstocksandbiodiversityaredependentonregionalclimateindouglasfirforestsofbritishcolumbia AT lesmlavkulich harvestintensityeffectsoncarbonstocksandbiodiversityaredependentonregionalclimateindouglasfirforestsofbritishcolumbia |
_version_ |
1725108407778672640 |