Reliability-Based Multidisciplinary Design Optimization under Correlated Uncertainties
Complex mechanical system is usually composed of several subsystems, which are often coupled with each other. Reliability-based multidisciplinary design optimization (RBMDO) is an efficient method to design such complex system under uncertainties. However, the present RBMDO methods ignored the corre...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2017/7360615 |
Summary: | Complex mechanical system is usually composed of several subsystems, which are often coupled with each other. Reliability-based multidisciplinary design optimization (RBMDO) is an efficient method to design such complex system under uncertainties. However, the present RBMDO methods ignored the correlations between uncertainties. In this paper, through combining the ellipsoidal set theory and first-order reliability method (FORM) for multidisciplinary design optimization (MDO), characteristics of correlated uncertainties are investigated. Furthermore, to improve computational efficiency, the sequential optimization and reliability assessment (SORA) strategy is utilized to obtain the optimization result. Both a mathematical example and a case study of an engineering system are provided to illustrate the feasibility and validity of the proposed method. |
---|---|
ISSN: | 1024-123X 1563-5147 |