Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis.
Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4701510?pdf=render |
id |
doaj-8300b1b8d81a40918996a348cb2d136a |
---|---|
record_format |
Article |
spelling |
doaj-8300b1b8d81a40918996a348cb2d136a2020-11-25T02:35:19ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01111e014509210.1371/journal.pone.0145092Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis.Debarati BasuLu TianTayler DebrosseEmily PoirierKirk EmchHayley HerockAndrew TraversAllan M ShowalterFundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity.http://europepmc.org/articles/PMC4701510?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Debarati Basu Lu Tian Tayler Debrosse Emily Poirier Kirk Emch Hayley Herock Andrew Travers Allan M Showalter |
spellingShingle |
Debarati Basu Lu Tian Tayler Debrosse Emily Poirier Kirk Emch Hayley Herock Andrew Travers Allan M Showalter Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis. PLoS ONE |
author_facet |
Debarati Basu Lu Tian Tayler Debrosse Emily Poirier Kirk Emch Hayley Herock Andrew Travers Allan M Showalter |
author_sort |
Debarati Basu |
title |
Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis. |
title_short |
Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis. |
title_full |
Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis. |
title_fullStr |
Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis. |
title_full_unstemmed |
Glycosylation of a Fasciclin-Like Arabinogalactan-Protein (SOS5) Mediates Root Growth and Seed Mucilage Adherence via a Cell Wall Receptor-Like Kinase (FEI1/FEI2) Pathway in Arabidopsis. |
title_sort |
glycosylation of a fasciclin-like arabinogalactan-protein (sos5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (fei1/fei2) pathway in arabidopsis. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
Fundamental processes that underpin plant growth and development depend crucially on the action and assembly of the cell wall, a dynamic structure that changes in response to both developmental and environmental cues. While much is known about cell wall structure and biosynthesis, much less is known about the functions of the individual wall components, particularly with respect to their potential roles in cellular signaling. Loss-of-function mutants of two arabinogalactan-protein (AGP)-specific galactosyltransferases namely, GALT2 and GALT5, confer pleiotropic growth and development phenotypes indicating the important contributions of carbohydrate moieties towards AGP function. Notably, galt2galt5 double mutants displayed impaired root growth and root tip swelling in response to salt, likely as a result of decreased cellulose synthesis. These mutants phenocopy a salt-overly sensitive mutant called sos5, which lacks a fasciclin-like AGP (SOS5/FLA4) as well as a fei1fei2 double mutant, which lacks two cell wall-associated leucine-rich repeat receptor-like kinases. Additionally, galt2gal5 as well as sos5 and fei2 showed reduced seed mucilage adherence. Quintuple galt2galt5sos5fei1fei2 mutants were produced and provided evidence that these genes act in a single, linear genetic pathway. Further genetic and biochemical analysis of the quintuple mutant demonstrated involvement of these genes with the interplay between cellulose biosynthesis and two plant growth regulators, ethylene and ABA, in modulating root cell wall integrity. |
url |
http://europepmc.org/articles/PMC4701510?pdf=render |
work_keys_str_mv |
AT debaratibasu glycosylationofafasciclinlikearabinogalactanproteinsos5mediatesrootgrowthandseedmucilageadherenceviaacellwallreceptorlikekinasefei1fei2pathwayinarabidopsis AT lutian glycosylationofafasciclinlikearabinogalactanproteinsos5mediatesrootgrowthandseedmucilageadherenceviaacellwallreceptorlikekinasefei1fei2pathwayinarabidopsis AT taylerdebrosse glycosylationofafasciclinlikearabinogalactanproteinsos5mediatesrootgrowthandseedmucilageadherenceviaacellwallreceptorlikekinasefei1fei2pathwayinarabidopsis AT emilypoirier glycosylationofafasciclinlikearabinogalactanproteinsos5mediatesrootgrowthandseedmucilageadherenceviaacellwallreceptorlikekinasefei1fei2pathwayinarabidopsis AT kirkemch glycosylationofafasciclinlikearabinogalactanproteinsos5mediatesrootgrowthandseedmucilageadherenceviaacellwallreceptorlikekinasefei1fei2pathwayinarabidopsis AT hayleyherock glycosylationofafasciclinlikearabinogalactanproteinsos5mediatesrootgrowthandseedmucilageadherenceviaacellwallreceptorlikekinasefei1fei2pathwayinarabidopsis AT andrewtravers glycosylationofafasciclinlikearabinogalactanproteinsos5mediatesrootgrowthandseedmucilageadherenceviaacellwallreceptorlikekinasefei1fei2pathwayinarabidopsis AT allanmshowalter glycosylationofafasciclinlikearabinogalactanproteinsos5mediatesrootgrowthandseedmucilageadherenceviaacellwallreceptorlikekinasefei1fei2pathwayinarabidopsis |
_version_ |
1724804082682560512 |