Optimal generation expansion planning model of a combined thermal–wind–PV power system considering multiple boundary conditions: A case study in Xinjiang, China

With the large-scale grid connection of wind and photovoltaic power, the contradiction between renewable energy and thermal power is becoming more and more serious. To solve this problem, this paper comprehensively considers the construction and operation costs of power plants, and constructs an opt...

Full description

Bibliographic Details
Main Authors: Yu Li, Mei Dai, Songtao Hao, Gang Qiu, Guoqing Li, Guilian Xiao, Dagui Liu
Format: Article
Language:English
Published: Elsevier 2021-11-01
Series:Energy Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352484721000214
Description
Summary:With the large-scale grid connection of wind and photovoltaic power, the contradiction between renewable energy and thermal power is becoming more and more serious. To solve this problem, this paper comprehensively considers the construction and operation costs of power plants, and constructs an optimal generation expansion planning model of a combined thermal–wind–photovoltaic​ power system with the objective of minimizing total cost. The planning is calculated under the boundary conditions of ensuring the safe operation of the power grid and taking into account the share requirement, utilization requirements and construction requirements for renewable energy. The model is applied to the self-use and supporting power plants in Xinjiang. The results show that the proposed generation expansion plan can realize the coordinated development of three types of power sources under multiple boundary conditions, which has good applicability.
ISSN:2352-4847