An Injectable, Dual Responsive, and Self-Healing Hydrogel Based on Oxidized Sodium Alginate and Hydrazide-Modified Poly(ethyleneglycol)

Oxidized sodium alginate is a handily modifiable polysaccharide owing to the pendant aldehyde groups which can form dynamic covalent bonds with amines, acylhydrazines, etc., providing oxidized sodium alginate-based hydrogels with stimuli-responsive properties. However, due to the stiffness and, in p...

Full description

Bibliographic Details
Main Authors: Lei Wang, Wanfu Zhou, Qingguo Wang, Chao Xu, Quan Tang, Haiyang Yang
Format: Article
Language:English
Published: MDPI AG 2018-03-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/23/3/546
Description
Summary:Oxidized sodium alginate is a handily modifiable polysaccharide owing to the pendant aldehyde groups which can form dynamic covalent bonds with amines, acylhydrazines, etc., providing oxidized sodium alginate-based hydrogels with stimuli-responsive properties. However, due to the stiffness and, in particular, the hydrophobicity of sodium alginate dialdehyde at low pH, the mechanical performance and pH stimuli responsiveness of oxidized sodium alginate-based hydrogels are still strictly limited. Herein, we report a new strategy to build an injectable, dual responsive, and self-healing hydrogel based on oxidized sodium alginate and hydrazide-modified poly(ethyleneglycol) (PEG). The hydrazide-modified PEG, referred to as PEG-DTP, acts as a macromolecule crosslinker. We found that the presence of PEG-DTP reduces the hydrophobicity of oxidized sodium alginate at low pH so effectively that even a pH-induced reversible sol-gel transitions can be realized. Meanwhile, the disulfide bonds in PEG-DTP endows the hydrogel with the other reversible sol-gel transitions by redox stimuli. In particular, due to the softness of PEG-DTP chains, mechanical performance was also enhanced significantly. Our results indicate we can easily integrate multi-stimuli responsiveness, injectability, and self-healing behavior together into an oxidized sodium alginate-based hydrogel merely by mixing an oxidized sodium alginate solution with PEG-DTP solution in certain proportions.
ISSN:1420-3049