Comparative Modelling and Artificial Neural Network Inspired Prediction of Waste Generation Rates of Hospitality Industry: The Case of North Cyprus

This study was undertaken to forecast the waste generation rates of the accommodation sector in North Cyprus. Three predictor models, multiple linear regression (MLR), artificial neural networks (ANNs) and central composite design (CCD), were applied to predict the waste generation rate during the l...

Full description

Bibliographic Details
Main Authors: Soolmaz L. Azarmi, Akeem Adeyemi Oladipo, Roozbeh Vaziri, Habib Alipour
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Sustainability
Subjects:
Online Access:http://www.mdpi.com/2071-1050/10/9/2965
Description
Summary:This study was undertaken to forecast the waste generation rates of the accommodation sector in North Cyprus. Three predictor models, multiple linear regression (MLR), artificial neural networks (ANNs) and central composite design (CCD), were applied to predict the waste generation rate during the lean and peak seasons. ANN showed highest prediction performance, specifically, lowest values of the standard error of prediction (SEP = 2.153), mean absolute error (MAE = 1.378) and highest R2 value (0.998) confirmed the accuracy of the model. The analysed waste was categorised into recyclable, general waste and food residue. The authors estimated the total waste generated during the lean season at 2010.5 kg/day, in which large hotels accounted for the largest fraction (66.7%), followed by medium-sized hotels (19.4%) and guesthouses (2.6%). During the peak season, about 49.6% increases in waste generation rates were obtained. Interestingly, 45% of the waste was generated by British tourists, while the least waste was generated by African tourists (7.5%). The ANN predicted that small and large hotels would produce 5.45 and 22.24 tons of waste by the year 2020, respectively. The findings herein are promising and useful in establishing a sustainable waste management system.
ISSN:2071-1050