Analysis of the DANAERO wind turbine field database to assess the importance of different state‐of‐the‐art blade element momentum (BEM) correction models

Abstract Aerodynamic loads of wind turbine blades are often predicted by manufacturers using the blade element momentum (BEM) theory, for which many corrections have been proposed in the literature. The physical impacts of such corrections on field measurements have seldom been assessed because of t...

Full description

Bibliographic Details
Main Authors: Thomas Potentier, Caroline Braud, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat
Format: Article
Language:English
Published: Wiley 2021-09-01
Series:Energy Science & Engineering
Subjects:
Online Access:https://doi.org/10.1002/ese3.908
Description
Summary:Abstract Aerodynamic loads of wind turbine blades are often predicted by manufacturers using the blade element momentum (BEM) theory, for which many corrections have been proposed in the literature. The physical impacts of such corrections on field measurements have seldom been assessed because of the relative unavailability of dedicated measurements. Based on the unique full‐scale database of the DANAERO project, available through the IEA (International Energy Agency) Task 29, this work incrementally applies on aerodynamic field measurement improvements of the BEM theory: atmospheric boundary layer vertical velocity gradient, neighboring wake, yaw misalignment, wind inflow location, tower shadow effect, cone angles modeling, blade aeroelastic deformation, and dynamic wake. This is performed using the iBEM method (inverse Blade Element Momentum), which back‐calculates the aerodynamic coefficients (lift—CL and drag—CD) using aerodynamic loads from field tests.
ISSN:2050-0505