Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell
Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs....
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Society for Microbiology
2016-01-01
|
Series: | mBio |
Online Access: | http://mbio.asm.org/cgi/content/full/7/1/e01921-15 |
id |
doaj-82c1796a1e894e34ac5b3db207ff4db3 |
---|---|
record_format |
Article |
spelling |
doaj-82c1796a1e894e34ac5b3db207ff4db32021-07-02T09:13:58ZengAmerican Society for MicrobiologymBio2150-75112016-01-0171e01921-1510.1128/mBio.01921-15Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBellMartin KohlstaedtSabine BuschmannHao XieAnja ResemannEberhard WarkentinJulian D. LangerHartmut MichelCytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1) was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303). Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH) which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI)–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions.http://mbio.asm.org/cgi/content/full/7/1/e01921-15 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Martin Kohlstaedt Sabine Buschmann Hao Xie Anja Resemann Eberhard Warkentin Julian D. Langer Hartmut Michel |
spellingShingle |
Martin Kohlstaedt Sabine Buschmann Hao Xie Anja Resemann Eberhard Warkentin Julian D. Langer Hartmut Michel Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell mBio |
author_facet |
Martin Kohlstaedt Sabine Buschmann Hao Xie Anja Resemann Eberhard Warkentin Julian D. Langer Hartmut Michel |
author_sort |
Martin Kohlstaedt |
title |
Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell |
title_short |
Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell |
title_full |
Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell |
title_fullStr |
Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell |
title_full_unstemmed |
Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell |
title_sort |
identification and characterization of the novel subunit ccom in the cbb3-cytochrome c oxidase from pseudomonas stutzeri zobell |
publisher |
American Society for Microbiology |
series |
mBio |
issn |
2150-7511 |
publishDate |
2016-01-01 |
description |
Cytochrome c oxidases (CcOs), members of the heme-copper containing oxidase (HCO) superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO) form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1) was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303). Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH) which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI)–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions. |
url |
http://mbio.asm.org/cgi/content/full/7/1/e01921-15 |
work_keys_str_mv |
AT martinkohlstaedt identificationandcharacterizationofthenovelsubunitccominthecbb3cytochromecoxidasefrompseudomonasstutzerizobell AT sabinebuschmann identificationandcharacterizationofthenovelsubunitccominthecbb3cytochromecoxidasefrompseudomonasstutzerizobell AT haoxie identificationandcharacterizationofthenovelsubunitccominthecbb3cytochromecoxidasefrompseudomonasstutzerizobell AT anjaresemann identificationandcharacterizationofthenovelsubunitccominthecbb3cytochromecoxidasefrompseudomonasstutzerizobell AT eberhardwarkentin identificationandcharacterizationofthenovelsubunitccominthecbb3cytochromecoxidasefrompseudomonasstutzerizobell AT juliandlanger identificationandcharacterizationofthenovelsubunitccominthecbb3cytochromecoxidasefrompseudomonasstutzerizobell AT hartmutmichel identificationandcharacterizationofthenovelsubunitccominthecbb3cytochromecoxidasefrompseudomonasstutzerizobell |
_version_ |
1721333413297782784 |