In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010

In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO<sub>2</sub> emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of s...

Full description

Bibliographic Details
Main Authors: E. Harris, B. Sinha, D. van Pinxteren, J. Schneider, L. Poulain, J. Collett, B. D'Anna, B. Fahlbusch, S. Foley, K. W. Fomba, C. George, T. Gnauk, S. Henning, T. Lee, S. Mertes, A. Roth, F. Stratmann, S. Borrmann, P. Hoppe, H. Herrmann
Format: Article
Language:English
Published: Copernicus Publications 2014-04-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/14/4219/2014/acp-14-4219-2014.pdf
id doaj-82afdd4d31804f2fad2dc469148cb5e9
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author E. Harris
B. Sinha
D. van Pinxteren
J. Schneider
L. Poulain
J. Collett
B. D'Anna
B. Fahlbusch
S. Foley
K. W. Fomba
C. George
T. Gnauk
S. Henning
T. Lee
S. Mertes
A. Roth
F. Stratmann
S. Borrmann
P. Hoppe
H. Herrmann
spellingShingle E. Harris
B. Sinha
D. van Pinxteren
J. Schneider
L. Poulain
J. Collett
B. D'Anna
B. Fahlbusch
S. Foley
K. W. Fomba
C. George
T. Gnauk
S. Henning
T. Lee
S. Mertes
A. Roth
F. Stratmann
S. Borrmann
P. Hoppe
H. Herrmann
In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010
Atmospheric Chemistry and Physics
author_facet E. Harris
B. Sinha
D. van Pinxteren
J. Schneider
L. Poulain
J. Collett
B. D'Anna
B. Fahlbusch
S. Foley
K. W. Fomba
C. George
T. Gnauk
S. Henning
T. Lee
S. Mertes
A. Roth
F. Stratmann
S. Borrmann
P. Hoppe
H. Herrmann
author_sort E. Harris
title In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010
title_short In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010
title_full In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010
title_fullStr In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010
title_full_unstemmed In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010
title_sort in-cloud sulfate addition to single particles resolved with sulfur isotope analysis during hcct-2010
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2014-04-01
description In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO<sub>2</sub> emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO<sub>2</sub> and H<sub>2</sub>SO<sub>4</sub> were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the &delta;<sup>34</sup>S of particulate sulfate to be resolved for particle size and type. <br><br> The most important in-cloud SO<sub>2</sub> oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H<sub>2</sub>SO<sub>4</sub> (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO<sub>2</sub> oxidation by H<sub>2</sub>O<sub>2</sub> and direct uptake of H<sub>2</sub>SO<sub>4</sub> (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.
url http://www.atmos-chem-phys.net/14/4219/2014/acp-14-4219-2014.pdf
work_keys_str_mv AT eharris incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT bsinha incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT dvanpinxteren incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT jschneider incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT lpoulain incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT jcollett incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT bdanna incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT bfahlbusch incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT sfoley incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT kwfomba incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT cgeorge incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT tgnauk incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT shenning incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT tlee incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT smertes incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT aroth incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT fstratmann incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT sborrmann incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT phoppe incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
AT hherrmann incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010
_version_ 1725743050375823360
spelling doaj-82afdd4d31804f2fad2dc469148cb5e92020-11-24T22:29:49ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242014-04-011484219423510.5194/acp-14-4219-2014In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010E. Harris0B. Sinha1D. van Pinxteren2J. Schneider3L. Poulain4J. Collett5B. D'Anna6B. Fahlbusch7S. Foley8K. W. Fomba9C. George10T. Gnauk11S. Henning12T. Lee13S. Mertes14A. Roth15F. Stratmann16S. Borrmann17P. Hoppe18H. Herrmann19Particle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USAInstitute de recherches sur la catalyse et l'environnement de Lyon (IRCE Lyon), University of Lyon, 69100 Villeurbanne, FranceDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USAEarth System Science Research Centre, Institute for Geosciences, University of Mainz, Becherweg 21, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyInstitute de recherches sur la catalyse et l'environnement de Lyon (IRCE Lyon), University of Lyon, 69100 Villeurbanne, FranceLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USALeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyIn-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO<sub>2</sub> emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO<sub>2</sub> and H<sub>2</sub>SO<sub>4</sub> were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the &delta;<sup>34</sup>S of particulate sulfate to be resolved for particle size and type. <br><br> The most important in-cloud SO<sub>2</sub> oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H<sub>2</sub>SO<sub>4</sub> (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO<sub>2</sub> oxidation by H<sub>2</sub>O<sub>2</sub> and direct uptake of H<sub>2</sub>SO<sub>4</sub> (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.http://www.atmos-chem-phys.net/14/4219/2014/acp-14-4219-2014.pdf