In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010
In-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO<sub>2</sub> emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of s...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2014-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/14/4219/2014/acp-14-4219-2014.pdf |
id |
doaj-82afdd4d31804f2fad2dc469148cb5e9 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
E. Harris B. Sinha D. van Pinxteren J. Schneider L. Poulain J. Collett B. D'Anna B. Fahlbusch S. Foley K. W. Fomba C. George T. Gnauk S. Henning T. Lee S. Mertes A. Roth F. Stratmann S. Borrmann P. Hoppe H. Herrmann |
spellingShingle |
E. Harris B. Sinha D. van Pinxteren J. Schneider L. Poulain J. Collett B. D'Anna B. Fahlbusch S. Foley K. W. Fomba C. George T. Gnauk S. Henning T. Lee S. Mertes A. Roth F. Stratmann S. Borrmann P. Hoppe H. Herrmann In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010 Atmospheric Chemistry and Physics |
author_facet |
E. Harris B. Sinha D. van Pinxteren J. Schneider L. Poulain J. Collett B. D'Anna B. Fahlbusch S. Foley K. W. Fomba C. George T. Gnauk S. Henning T. Lee S. Mertes A. Roth F. Stratmann S. Borrmann P. Hoppe H. Herrmann |
author_sort |
E. Harris |
title |
In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010 |
title_short |
In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010 |
title_full |
In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010 |
title_fullStr |
In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010 |
title_full_unstemmed |
In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010 |
title_sort |
in-cloud sulfate addition to single particles resolved with sulfur isotope analysis during hcct-2010 |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2014-04-01 |
description |
In-cloud production of sulfate modifies aerosol size distribution, with
important implications for the magnitude of indirect and direct aerosol
cooling and the impact of SO<sub>2</sub> emissions on the environment. We investigate
which sulfate sources dominate the in-cloud addition of sulfate to different
particle classes as an air parcel passes through an orographic cloud. Sulfate
aerosol, SO<sub>2</sub> and H<sub>2</sub>SO<sub>4</sub> were collected upwind, in-cloud and downwind
of an orographic cloud for three cloud measurement events during the Hill Cap
Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and
NanoSIMS analysis of single particles allowed the δ<sup>34</sup>S of
particulate sulfate to be resolved for particle size and type.
<br><br>
The most important in-cloud SO<sub>2</sub> oxidation pathway at HCCT-2010 was aqueous
oxidation catalysed by transition metal ions (TMI catalysis), which was shown
with single particle isotope analyses to occur primarily in cloud droplets
nucleated on coarse mineral dust. In contrast, direct uptake of H<sub>2</sub>SO<sub>4</sub>
(g) and ultrafine particulate were the most important sources modifying fine
mineral dust, increasing its hygroscopicity and facilitating activation.
Sulfate addition to "mixed" particles (secondary organic and inorganic
aerosol) and coated soot was dominated by in-cloud aqueous SO<sub>2</sub> oxidation
by H<sub>2</sub>O<sub>2</sub> and direct uptake of H<sub>2</sub>SO<sub>4</sub> (g) and ultrafine particle
sulfate, depending on particle size mode and time of day. These results
provide new insight into in-cloud sulfate production mechanisms, and show the
importance of single particle measurements and models to accurately assess
the environmental effects of cloud processing. |
url |
http://www.atmos-chem-phys.net/14/4219/2014/acp-14-4219-2014.pdf |
work_keys_str_mv |
AT eharris incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT bsinha incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT dvanpinxteren incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT jschneider incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT lpoulain incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT jcollett incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT bdanna incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT bfahlbusch incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT sfoley incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT kwfomba incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT cgeorge incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT tgnauk incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT shenning incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT tlee incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT smertes incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT aroth incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT fstratmann incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT sborrmann incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT phoppe incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 AT hherrmann incloudsulfateadditiontosingleparticlesresolvedwithsulfurisotopeanalysisduringhcct2010 |
_version_ |
1725743050375823360 |
spelling |
doaj-82afdd4d31804f2fad2dc469148cb5e92020-11-24T22:29:49ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242014-04-011484219423510.5194/acp-14-4219-2014In-cloud sulfate addition to single particles resolved with sulfur isotope analysis during HCCT-2010E. Harris0B. Sinha1D. van Pinxteren2J. Schneider3L. Poulain4J. Collett5B. D'Anna6B. Fahlbusch7S. Foley8K. W. Fomba9C. George10T. Gnauk11S. Henning12T. Lee13S. Mertes14A. Roth15F. Stratmann16S. Borrmann17P. Hoppe18H. Herrmann19Particle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USAInstitute de recherches sur la catalyse et l'environnement de Lyon (IRCE Lyon), University of Lyon, 69100 Villeurbanne, FranceDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USAEarth System Science Research Centre, Institute for Geosciences, University of Mainz, Becherweg 21, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyInstitute de recherches sur la catalyse et l'environnement de Lyon (IRCE Lyon), University of Lyon, 69100 Villeurbanne, FranceLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USALeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyParticle Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, GermanyLeibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, GermanyIn-cloud production of sulfate modifies aerosol size distribution, with important implications for the magnitude of indirect and direct aerosol cooling and the impact of SO<sub>2</sub> emissions on the environment. We investigate which sulfate sources dominate the in-cloud addition of sulfate to different particle classes as an air parcel passes through an orographic cloud. Sulfate aerosol, SO<sub>2</sub> and H<sub>2</sub>SO<sub>4</sub> were collected upwind, in-cloud and downwind of an orographic cloud for three cloud measurement events during the Hill Cap Cloud Thuringia campaign in autumn 2010 (HCCT-2010). Combined SEM and NanoSIMS analysis of single particles allowed the δ<sup>34</sup>S of particulate sulfate to be resolved for particle size and type. <br><br> The most important in-cloud SO<sub>2</sub> oxidation pathway at HCCT-2010 was aqueous oxidation catalysed by transition metal ions (TMI catalysis), which was shown with single particle isotope analyses to occur primarily in cloud droplets nucleated on coarse mineral dust. In contrast, direct uptake of H<sub>2</sub>SO<sub>4</sub> (g) and ultrafine particulate were the most important sources modifying fine mineral dust, increasing its hygroscopicity and facilitating activation. Sulfate addition to "mixed" particles (secondary organic and inorganic aerosol) and coated soot was dominated by in-cloud aqueous SO<sub>2</sub> oxidation by H<sub>2</sub>O<sub>2</sub> and direct uptake of H<sub>2</sub>SO<sub>4</sub> (g) and ultrafine particle sulfate, depending on particle size mode and time of day. These results provide new insight into in-cloud sulfate production mechanisms, and show the importance of single particle measurements and models to accurately assess the environmental effects of cloud processing.http://www.atmos-chem-phys.net/14/4219/2014/acp-14-4219-2014.pdf |