Group Invariant Solutions for Flow and Heat Transfer of Power-Law Nanofluid in a Porous Medium

The present work covers the flow and heat transfer model for the power-law nanofluid in the presence of a porous medium over the penetrable plate. The flow is caused by the impulsive movement of the plate embedded in Darcy’s type porous medium. The flow and heat transfer model has been examined with...

Full description

Bibliographic Details
Main Authors: Saba Javaid, Asim Aziz
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2021/9942425
Description
Summary:The present work covers the flow and heat transfer model for the power-law nanofluid in the presence of a porous medium over the penetrable plate. The flow is caused by the impulsive movement of the plate embedded in Darcy’s type porous medium. The flow and heat transfer model has been examined with the effect of linear thermal radiation and the internal heat source or sink in the flow regime. The Rosseland approximation is utilized for the optically thick nanofluid. To form the closed-form solutions for the governing partial differential equations of conservation of mass, momentum, and energy, the Lie symmetry analysis is used to get the reductions of governing equations and to find the group invariants. These invariants are then utilized to obtain the exact solution for all three cases, i.e., shear thinning fluid, Newtonian fluid, and shear thickening fluid. In the end, all solutions are plotted for the cu-water nanofluid and discussed briefly for the different emerging flow and heat transfer parameters.
ISSN:1563-5147