USING DJI PHANTOM 4 RTK DRONE FOR TOPOGRAPHIC MAPPING OF COASTAL AREAS

Imagery acquisition systems by Unmanned Aerial Vehicles (UAVs) have been rapidly evolving within the last few years. In mapping applications, it is the introduction of a considerable amount of Ground Control Points (GCPs) that enables the final reconstruction of a real-scale framed model. Since the...

Full description

Bibliographic Details
Main Authors: Y. Taddia, F. Stecchi, A. Pellegrinelli
Format: Article
Language:English
Published: Copernicus Publications 2019-06-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/625/2019/isprs-archives-XLII-2-W13-625-2019.pdf
Description
Summary:Imagery acquisition systems by Unmanned Aerial Vehicles (UAVs) have been rapidly evolving within the last few years. In mapping applications, it is the introduction of a considerable amount of Ground Control Points (GCPs) that enables the final reconstruction of a real-scale framed model. Since the survey of GCPs generally requires the use of total stations or GNSS receivers in Real Time Kinematic (RTK), either with or without a Network approach (NRTK), this on-site operation is particularly time consuming. In addition, the lack of clearly image-recognizable points may force the use of artificial markers (signalised GCPs) whenever no features are naturally available in the field. This implies a real waste of time for the deployment of the targets, as well as for their recovery. Recently, aircrafts’ manufacturers have integrated the on-board RTK capability on their UAVs. In such a way, the high precision GNSS system allows the 3D position detection of the camera at the time of each capture within few centimetres. In this work, we tested the DJI Phantom 4 RTK for the topographic survey of a coastal section in the Northern Adriatic Sea (Italy). The flights were performed flying at an 80 m altitude to ensure a Ground Sample Distance (GSD) of about 2 centimetres. The site extended up to 2 kilometres longitudinally. The results confirm that the on-board RTK approach really speeds up the precise mapping of coastal regions and that a single GCP may be needed to make a reliable estimation of the focal length.
ISSN:1682-1750
2194-9034