NEURAL NETWORKS FOR THE CLASSIFICATION OF BUILDING USE FROM STREET-VIEW IMAGERY

Within this paper we propose an end-to-end approach for classifying terrestrial images of building facades into five different utility classes (<i>commercial, hybrid, residential, specialUse, underConstruction</i>) by using Convolutional Neural Networks (CNNs). For our examples we use im...

Full description

Bibliographic Details
Main Authors: D. Laupheimer, P. Tutzauer, N. Haala, M. Spicker
Format: Article
Language:English
Published: Copernicus Publications 2018-05-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2/177/2018/isprs-annals-IV-2-177-2018.pdf
Description
Summary:Within this paper we propose an end-to-end approach for classifying terrestrial images of building facades into five different utility classes (<i>commercial, hybrid, residential, specialUse, underConstruction</i>) by using Convolutional Neural Networks (CNNs). For our examples we use images provided by Google Street View. These images are automatically linked to a coarse city model, including the outlines of the buildings as well as their respective use classes. By these means an extensive dataset is available for training and evaluation of our Deep Learning pipeline. The paper describes the implemented end-to-end approach for classifying street-level images of building facades and discusses our experiments with various CNNs. In addition to the classification results, so-called Class Activation Maps (CAMs) are evaluated. These maps give further insights into decisive facade parts that are learned as features during the training process. Furthermore, they can be used for the generation of abstract presentations which facilitate the comprehension of semantic image content. The abstract representations are a result of the stippling method, an importance-based image rendering.
ISSN:2194-9042
2194-9050