LSSVM-Based Rock Failure Criterion and Its Application in Numerical Simulation
A rock failure criterion is very important for the prediction of the failure of rocks or rock masses in rock mechanics and engineering. Least squares support vector machines (LSSVM) are a powerful tool for addressing complex nonlinear problems. This paper describes a LSSVM-based rock failure criteri...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2015/246068 |
Summary: | A rock failure criterion is very important for the prediction of the failure of rocks or rock masses in rock mechanics and engineering. Least squares support vector machines (LSSVM) are a powerful tool for addressing complex nonlinear problems. This paper describes a LSSVM-based rock failure criterion for analyzing the deformation of a circular tunnel under different in situ stresses without assuming a function form. First, LSSVM was used to represent the nonlinear relationship between the mechanical properties of rock and the failure behavior of the rock in order to construct a rock failure criterion based on experimental data. Then, this was used in a hypothetical numerical analysis of a circular tunnel to analyze the mechanical behavior of the rock mass surrounding the tunnel. The Mohr-Coulomb and Hoek-Brown failure criteria were also used to analyze the same case, and the results were compared; these clearly indicate that LSSVM can be used to establish a rock failure criterion and to predict the failure of a rock mass during excavation of a circular tunnel. |
---|---|
ISSN: | 1024-123X 1563-5147 |