Completitud y continuidad en Fundamentos de la Geometría de Hilbert: acerca del Vollständigkeitsaxiom
El artículo documenta y analiza las vicisitudes en torno a la incorporación de Hilbert de su famoso axioma de completitud, en el sistema axiomático para la geometría euclídea. Esta tarea es emprendida sobre la base del material que aportan sus notas manuscritas para clases, correspondientes al perío...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of the Basque Country
2013-02-01
|
Series: | THEORIA : an International Journal for Theory, History and Fundations of Science |
Subjects: | |
Online Access: | http://www.ehu.es/ojs/index.php/THEORIA/article/view/4544 |
id |
doaj-828ce25fcdbc4ecfada5b479d730b21b |
---|---|
record_format |
Article |
spelling |
doaj-828ce25fcdbc4ecfada5b479d730b21b2020-11-24T23:04:52ZengUniversity of the Basque CountryTHEORIA : an International Journal for Theory, History and Fundations of Science0495-45482171-679X2013-02-0128113916310.1387/theoria.45445823Completitud y continuidad en Fundamentos de la Geometría de Hilbert: acerca del VollständigkeitsaxiomEduardo Nicolás Giovannini0CONICET -- Universidad Nacional del Litoral, ArgentinaEl artículo documenta y analiza las vicisitudes en torno a la incorporación de Hilbert de su famoso axioma de completitud, en el sistema axiomático para la geometría euclídea. Esta tarea es emprendida sobre la base del material que aportan sus notas manuscritas para clases, correspondientes al período 1894--1905. Se argumenta que este análisis histórico y conceptual no sólo permite ganar claridad respecto de cómo Hilbert concibió originalmente la naturaleza y función del axioma de completitud en su versión geométrica, sino que además permite disipar equívocos en cuanto a la relación de este axioma con la propiedad de completitud de un sistema axiomático, tal como fue concebida por Hilbert en esta etapa inicial.http://www.ehu.es/ojs/index.php/THEORIA/article/view/4544Hilbertaxioma de completitudfilosofía de la geometríamétodo axiomático |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Eduardo Nicolás Giovannini |
spellingShingle |
Eduardo Nicolás Giovannini Completitud y continuidad en Fundamentos de la Geometría de Hilbert: acerca del Vollständigkeitsaxiom THEORIA : an International Journal for Theory, History and Fundations of Science Hilbert axioma de completitud filosofía de la geometría método axiomático |
author_facet |
Eduardo Nicolás Giovannini |
author_sort |
Eduardo Nicolás Giovannini |
title |
Completitud y continuidad en Fundamentos de la Geometría de Hilbert: acerca del Vollständigkeitsaxiom |
title_short |
Completitud y continuidad en Fundamentos de la Geometría de Hilbert: acerca del Vollständigkeitsaxiom |
title_full |
Completitud y continuidad en Fundamentos de la Geometría de Hilbert: acerca del Vollständigkeitsaxiom |
title_fullStr |
Completitud y continuidad en Fundamentos de la Geometría de Hilbert: acerca del Vollständigkeitsaxiom |
title_full_unstemmed |
Completitud y continuidad en Fundamentos de la Geometría de Hilbert: acerca del Vollständigkeitsaxiom |
title_sort |
completitud y continuidad en fundamentos de la geometría de hilbert: acerca del vollständigkeitsaxiom |
publisher |
University of the Basque Country |
series |
THEORIA : an International Journal for Theory, History and Fundations of Science |
issn |
0495-4548 2171-679X |
publishDate |
2013-02-01 |
description |
El artículo documenta y analiza las vicisitudes en torno a la incorporación de Hilbert de su famoso axioma de completitud, en el sistema axiomático para la geometría euclídea. Esta tarea es emprendida sobre la base del material que aportan sus notas manuscritas para clases, correspondientes al período 1894--1905. Se argumenta que este análisis histórico y conceptual no sólo permite ganar claridad respecto de cómo Hilbert concibió originalmente la naturaleza y función del axioma de completitud en su versión geométrica, sino que además permite disipar equívocos en cuanto a la relación de este axioma con la propiedad de completitud de un sistema axiomático, tal como fue concebida por Hilbert en esta etapa inicial. |
topic |
Hilbert axioma de completitud filosofía de la geometría método axiomático |
url |
http://www.ehu.es/ojs/index.php/THEORIA/article/view/4544 |
work_keys_str_mv |
AT eduardonicolasgiovannini completitudycontinuidadenfundamentosdelageometriadehilbertacercadelvollstandigkeitsaxiom |
_version_ |
1725628923248640000 |