Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images
<p>Abstract</p> <p>Background</p> <p>Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this t...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2012-01-01
|
Series: | BioMedical Engineering OnLine |
Online Access: | http://www.biomedical-engineering-online.com/content/11/1/3 |
id |
doaj-8259257b73444f7fbb2dd9d9dbef2914 |
---|---|
record_format |
Article |
spelling |
doaj-8259257b73444f7fbb2dd9d9dbef29142020-11-24T20:51:58ZengBMCBioMedical Engineering OnLine1475-925X2012-01-01111310.1186/1475-925X-11-3Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy imagesBarbosa Daniel CRoupar Dalila BRamos Jaime CTavares Adriano CLima Carlos S<p>Abstract</p> <p>Background</p> <p>Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity.</p> <p>Method</p> <p>The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis.</p> <p>Results</p> <p>The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.</p> http://www.biomedical-engineering-online.com/content/11/1/3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Barbosa Daniel C Roupar Dalila B Ramos Jaime C Tavares Adriano C Lima Carlos S |
spellingShingle |
Barbosa Daniel C Roupar Dalila B Ramos Jaime C Tavares Adriano C Lima Carlos S Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images BioMedical Engineering OnLine |
author_facet |
Barbosa Daniel C Roupar Dalila B Ramos Jaime C Tavares Adriano C Lima Carlos S |
author_sort |
Barbosa Daniel C |
title |
Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images |
title_short |
Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images |
title_full |
Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images |
title_fullStr |
Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images |
title_full_unstemmed |
Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images |
title_sort |
automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images |
publisher |
BMC |
series |
BioMedical Engineering OnLine |
issn |
1475-925X |
publishDate |
2012-01-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity.</p> <p>Method</p> <p>The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis.</p> <p>Results</p> <p>The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.</p> |
url |
http://www.biomedical-engineering-online.com/content/11/1/3 |
work_keys_str_mv |
AT barbosadanielc automaticsmallboweltumordiagnosisbyusingmultiscalewaveletbasedanalysisinwirelesscapsuleendoscopyimages AT roupardalilab automaticsmallboweltumordiagnosisbyusingmultiscalewaveletbasedanalysisinwirelesscapsuleendoscopyimages AT ramosjaimec automaticsmallboweltumordiagnosisbyusingmultiscalewaveletbasedanalysisinwirelesscapsuleendoscopyimages AT tavaresadrianoc automaticsmallboweltumordiagnosisbyusingmultiscalewaveletbasedanalysisinwirelesscapsuleendoscopyimages AT limacarloss automaticsmallboweltumordiagnosisbyusingmultiscalewaveletbasedanalysisinwirelesscapsuleendoscopyimages |
_version_ |
1716800725482209280 |