Effect of Discontinuous Ultrasonic Treatment on Mechanical Properties and Microstructure of Cast Al413-SiCnp Nanocomposites

Effects of discontinuous ultrasonic treatment on the microstructure, nanoparticle distribution, and mechanical properties of cast Al413-SiCnp nanocomposites were studied. The results showed that discontinuous ultrasonic treatment was more effective in improving the mechanical properties of the cast...

Full description

Bibliographic Details
Main Authors: M.R. Dehnavi, B. Niroumand, F. Ashrafizadeh
Format: Article
Language:fas
Published: Isfahan University of Technology 2015-05-01
Series:Journal of Advanced Materials in Engineering
Subjects:
Online Access:http://jame.iut.ac.ir/article-1-644-en.html
Description
Summary:Effects of discontinuous ultrasonic treatment on the microstructure, nanoparticle distribution, and mechanical properties of cast Al413-SiCnp nanocomposites were studied. The results showed that discontinuous ultrasonic treatment was more effective in improving the mechanical properties of the cast nanocomposites than the equally timed continuous treatment. The yield and ultimate tensile strengths of Al413-2%SiCnp nanocomposites discontinuously treated for two 20 minute periods increased by about 126% and 100% compared to those of the monolithic sample, respectively. These improvements were about 107% and 94% for the nanocomposites continuously treated for a single 40 minute period. The improvement in the mechanical properties was associated with severe refinement of the microstructure, removal of the remaining gas layers on the particles surfaces, more effective fragmentation of the remaining agglomerates as well as improved wettability and distribution of the reinforcing particles during the first stage of solidification.
ISSN:2251-600X
2423-5733