Experimental studies of strength flanged connections

In Russia experimental studies of flange joints of beams with columns have not been carried out previously, which led to the absence of normative methods for their calculation and design. The article presents the results of full-scale tests of three models of flange connections. Models vary in bolt...

Full description

Bibliographic Details
Main Author: Марк Петрович Сон
Format: Article
Language:English
Published: Peoples’ Friendship University of Russia (RUDN University) 2018-12-01
Series:Structural Mechanics of Engineering Constructions and Buildings
Subjects:
Online Access:http://journals.rudn.ru/structural-mechanics/article/view/19282
Description
Summary:In Russia experimental studies of flange joints of beams with columns have not been carried out previously, which led to the absence of normative methods for their calculation and design. The article presents the results of full-scale tests of three models of flange connections. Models vary in bolt strength, flange thickness, and loading pattern. The purpose of the experiments was to study the operation and bearing capacity of flange joints of beams with columns in the elastic and elastoplastic stage under the action of static loads. The experiments were carried out according to a multifactorial plan. The researches were carried out on a test bench developed by the author, representing a closed power circuit receptive the pressure of the jacks without the occurrence of reactions to the laboratory's power floor. The pressure in the loading system was fixed by pressure gauges, the displacement by linear displacement sensors, and deformations by strain gauges. According to the results of the experiments, it has been shown that it is possible to design and operate flange joints without reinforcement elements, such as stiffeners, haunches, back flanges, support tables, etc. Up to loads of 25-35 tf, the connections worked linearly, samples are destroyed at moments of 45-50 tf·m. Efforts perceived by full-scale models proved to be several times higher than those calculated in the “Kometa-2” program and recommended for calculating flange connections.
ISSN:1815-5235
2587-8700