Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant protein

Abstract Background As malaria incidence and transmission in a region decreases, it becomes increasingly difficult to identify areas of active transmission. Improved methods for identifying and monitoring foci of active malaria transmission are needed in areas of low parasite prevalence in order to...

Full description

Bibliographic Details
Main Authors: Jessica N. McCaffery, Balwan Singh, Douglas Nace, Alberto Moreno, Venkatachalam Udhayakumar, Eric Rogier
Format: Article
Language:English
Published: BMC 2021-02-01
Series:Malaria Journal
Subjects:
Online Access:https://doi.org/10.1186/s12936-021-03626-0
id doaj-822cef6abd674fbba059e9f4ea253c1d
record_format Article
spelling doaj-822cef6abd674fbba059e9f4ea253c1d2021-02-14T12:47:38ZengBMCMalaria Journal1475-28752021-02-0120111410.1186/s12936-021-03626-0Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant proteinJessica N. McCaffery0Balwan Singh1Douglas Nace2Alberto Moreno3Venkatachalam Udhayakumar4Eric Rogier5Emory Vaccine Center, Yerkes National Primate Research Center, Emory UniversityMalaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and PreventionMalaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and PreventionEmory Vaccine Center, Yerkes National Primate Research Center, Emory UniversityMalaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and PreventionMalaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and PreventionAbstract Background As malaria incidence and transmission in a region decreases, it becomes increasingly difficult to identify areas of active transmission. Improved methods for identifying and monitoring foci of active malaria transmission are needed in areas of low parasite prevalence in order to achieve malaria elimination. Serological assays can provide population-level infection history to inform elimination campaigns. Methods A bead-based multiplex antibody detection assay was used to evaluate a chimeric Plasmodium vivax MSP1 protein (PvRMC-MSP1), designed to be broadly immunogenic for use in vaccine studies, to act as a pan-malaria serological tool based on its ability to capture IgG in plasma samples obtained from naturally exposed individuals. Samples from 236 US travellers with PCR confirmed infection status from all four major Plasmodium species infecting humans, Plasmodium falciparum (n = 181), Plasmodium vivax (n = 38), Plasmodium malariae (n = 4), and Plasmodium ovale (n = 13) were tested for IgG capture using PvRMC-MSP1 as well as the four recombinant MSP1-19 kD isoforms representative of these Plasmodium species. Results Regardless of infecting Plasmodium species, a large proportion of plasma samples from infected US travellers provided a high assay signal to the PvRMC-MSP1 chimeric protein, with 115 high responders out of 236 samples assessed (48.7%). When grouped by active infection, 38.7% P. falciparum-, 92.1% of P. vivax-, 75.0% P. malariae-, and 53.4% of P. ovale-infected individuals displayed high assay signals in response to PvRMC-MSP1. It was also determined that plasma from P. vivax-infected individuals produced increased assay signals in response to the PvRMC-MSP1 chimera as compared to the recombinant PvMSP1 for 89.5% (34 out of 38) of individuals. PvRMC-MSP1 also showed improved ability to capture IgG antibodies from P. falciparum-infected individuals when compared to the capture by recombinant PvMSP1, with high assay signals observed for 38.7% of P. falciparum-infected travellers in response to PvRMC-MSP1 IgG capture compared to just 1.1% who were high responders to capture by the recombinant PvMSP1 protein. Conclusions These results support further study of designed antigens as an approach for increasing sensitivity or broadening binding capacity to improve existing serological tools for determining population-level exposure to Plasmodium species. Including both broad-reacting and Plasmodium species-specific antigen-coated beads in an assay panel could provide a nuanced view of population-level exposure histories, an extensive IgG profile, and detailed seroestimates. A more sensitive serological tool for detection of P. vivax exposure would aid malaria elimination campaigns in co-endemic areas and regions where P. vivax is the dominant parasite.https://doi.org/10.1186/s12936-021-03626-0MalariaPlasmodium vivaxChimeric proteinSerologyMultiplexSeroepidemiology
collection DOAJ
language English
format Article
sources DOAJ
author Jessica N. McCaffery
Balwan Singh
Douglas Nace
Alberto Moreno
Venkatachalam Udhayakumar
Eric Rogier
spellingShingle Jessica N. McCaffery
Balwan Singh
Douglas Nace
Alberto Moreno
Venkatachalam Udhayakumar
Eric Rogier
Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant protein
Malaria Journal
Malaria
Plasmodium vivax
Chimeric protein
Serology
Multiplex
Seroepidemiology
author_facet Jessica N. McCaffery
Balwan Singh
Douglas Nace
Alberto Moreno
Venkatachalam Udhayakumar
Eric Rogier
author_sort Jessica N. McCaffery
title Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant protein
title_short Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant protein
title_full Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant protein
title_fullStr Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant protein
title_full_unstemmed Natural infections with different Plasmodium species induce antibodies reactive to a chimeric Plasmodium vivax recombinant protein
title_sort natural infections with different plasmodium species induce antibodies reactive to a chimeric plasmodium vivax recombinant protein
publisher BMC
series Malaria Journal
issn 1475-2875
publishDate 2021-02-01
description Abstract Background As malaria incidence and transmission in a region decreases, it becomes increasingly difficult to identify areas of active transmission. Improved methods for identifying and monitoring foci of active malaria transmission are needed in areas of low parasite prevalence in order to achieve malaria elimination. Serological assays can provide population-level infection history to inform elimination campaigns. Methods A bead-based multiplex antibody detection assay was used to evaluate a chimeric Plasmodium vivax MSP1 protein (PvRMC-MSP1), designed to be broadly immunogenic for use in vaccine studies, to act as a pan-malaria serological tool based on its ability to capture IgG in plasma samples obtained from naturally exposed individuals. Samples from 236 US travellers with PCR confirmed infection status from all four major Plasmodium species infecting humans, Plasmodium falciparum (n = 181), Plasmodium vivax (n = 38), Plasmodium malariae (n = 4), and Plasmodium ovale (n = 13) were tested for IgG capture using PvRMC-MSP1 as well as the four recombinant MSP1-19 kD isoforms representative of these Plasmodium species. Results Regardless of infecting Plasmodium species, a large proportion of plasma samples from infected US travellers provided a high assay signal to the PvRMC-MSP1 chimeric protein, with 115 high responders out of 236 samples assessed (48.7%). When grouped by active infection, 38.7% P. falciparum-, 92.1% of P. vivax-, 75.0% P. malariae-, and 53.4% of P. ovale-infected individuals displayed high assay signals in response to PvRMC-MSP1. It was also determined that plasma from P. vivax-infected individuals produced increased assay signals in response to the PvRMC-MSP1 chimera as compared to the recombinant PvMSP1 for 89.5% (34 out of 38) of individuals. PvRMC-MSP1 also showed improved ability to capture IgG antibodies from P. falciparum-infected individuals when compared to the capture by recombinant PvMSP1, with high assay signals observed for 38.7% of P. falciparum-infected travellers in response to PvRMC-MSP1 IgG capture compared to just 1.1% who were high responders to capture by the recombinant PvMSP1 protein. Conclusions These results support further study of designed antigens as an approach for increasing sensitivity or broadening binding capacity to improve existing serological tools for determining population-level exposure to Plasmodium species. Including both broad-reacting and Plasmodium species-specific antigen-coated beads in an assay panel could provide a nuanced view of population-level exposure histories, an extensive IgG profile, and detailed seroestimates. A more sensitive serological tool for detection of P. vivax exposure would aid malaria elimination campaigns in co-endemic areas and regions where P. vivax is the dominant parasite.
topic Malaria
Plasmodium vivax
Chimeric protein
Serology
Multiplex
Seroepidemiology
url https://doi.org/10.1186/s12936-021-03626-0
work_keys_str_mv AT jessicanmccaffery naturalinfectionswithdifferentplasmodiumspeciesinduceantibodiesreactivetoachimericplasmodiumvivaxrecombinantprotein
AT balwansingh naturalinfectionswithdifferentplasmodiumspeciesinduceantibodiesreactivetoachimericplasmodiumvivaxrecombinantprotein
AT douglasnace naturalinfectionswithdifferentplasmodiumspeciesinduceantibodiesreactivetoachimericplasmodiumvivaxrecombinantprotein
AT albertomoreno naturalinfectionswithdifferentplasmodiumspeciesinduceantibodiesreactivetoachimericplasmodiumvivaxrecombinantprotein
AT venkatachalamudhayakumar naturalinfectionswithdifferentplasmodiumspeciesinduceantibodiesreactivetoachimericplasmodiumvivaxrecombinantprotein
AT ericrogier naturalinfectionswithdifferentplasmodiumspeciesinduceantibodiesreactivetoachimericplasmodiumvivaxrecombinantprotein
_version_ 1724270072933908480