Ordering non-bipartite unicyclic graphs with pendant vertices by the least Q-eigenvalue

Abstract A unicyclic graph is a connected graph whose number of edges is equal to the number of vertices. Fan et al. (Discrete Math. 313:903-909, 2013) and Liu et al. (Electron. J. Linear Algebra 26:333-344, 2013) determined, independently, the unique unicyclic graph whose least Q-eigenvalue attains...

Full description

Bibliographic Details
Main Authors: Shu-Guang Guo, Xiaorong Liu, Rong Zhang, Guanglong Yu
Format: Article
Language:English
Published: SpringerOpen 2016-05-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1077-1
Description
Summary:Abstract A unicyclic graph is a connected graph whose number of edges is equal to the number of vertices. Fan et al. (Discrete Math. 313:903-909, 2013) and Liu et al. (Electron. J. Linear Algebra 26:333-344, 2013) determined, independently, the unique unicyclic graph whose least Q-eigenvalue attains the minimum among all non-bipartite unicyclic graphs of order n with k pendant vertices. In this paper, we extend their results and determine the first three non-bipartite unicyclic graphs of order n with k pendant vertices ordering by least Q-eigenvalue.
ISSN:1029-242X