Synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline

The search for new high-performance antimicrobial compounds remains one of the most important tasks of modern pharmaceutical chemistry, despite the wide range of modern natural, synthetic and semi-synthetic drugs for the treatment of infectious diseases. This is especially true for the naturally occ...

Full description

Bibliographic Details
Main Author: D. G. Ivanchenko
Format: Article
Language:English
Published: Zaporozhye State Medical University 2016-08-01
Series:Aktualʹnì Pitannâ Farmacevtičnoï ì Medičnoï Nauki ta Praktiki
Subjects:
Online Access:http://pharmed.zsmu.edu.ua/article/view/71055/67969
id doaj-81e9fa260573453dba267a3205bbcd51
record_format Article
spelling doaj-81e9fa260573453dba267a3205bbcd512020-11-24T23:09:05ZengZaporozhye State Medical UniversityAktualʹnì Pitannâ Farmacevtičnoï ì Medičnoï Nauki ta Praktiki2306-80942409-29322016-08-0124910.14739/2409-2932.2016.2.71055Synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophyllineD. G. IvanchenkoThe search for new high-performance antimicrobial compounds remains one of the most important tasks of modern pharmaceutical chemistry, despite the wide range of modern natural, synthetic and semi-synthetic drugs for the treatment of infectious diseases. This is especially true for the naturally occurring compounds, new non-toxic and effective drugs can be created by their chemical modification for the treatment of various infectious pathologies. Recent researches in this area pay significant interest to new synthetic derivatives of xanthine. The aim of this paper is to elaborate simple laboratory methods of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline synthesis, unspecified in scientific papers earlier, and to study their physical, chemical and biological properties. Materials and methods of research. The melting point has been determined with the help of an open capillary method with PTP-M device. Elemental analysis has been performed with the help of the instrument Elementar Vario L cube, NMR-spectra have been taken on a spectrometer Bruker SF-400 (operating frequency of 400 MHz, solvent DMSO, internal standard – TMS). Study of antimicrobial and antifungal activity of synthesized compounds has been performed by two-fold serial dilution method. Standard test strains have been used for the study: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 885–653. Basic preparation solution has been prepared at a concentration of 1 mg in 1 mL of DMSO. Results and their discussion. Through the interaction of 8-bromotheophylline with the styrene oxide in propanol-1 environment was obtained an 8-bromo-7-(2-hydroxy-2-phenylethyl)theophylline, which under short-time heating up with primary amines of various structure or piperazine derivatives in aqueous dioxane or propanol-1 leads to the replacement of the bromine atom at the 8-position to form corresponding 8-aminosubstituted. Structure of synthesized compounds has been definitely proved by NMR-spectroscopy. Primary screening research of antimicrobial and antifungal activity of 8-aminosubstituted of 7-(2-hydroxy-2-phenylethyl)theophylline shows that these compounds reveal moderate and weak activity in concentrations 25–200 mcg/ml. Conclusions. Accessible laboratory methods have been elaborated for synthesis of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline. The NMR H1 spectral characteristics of the synthesized compounds have been analyzed and interpreted. Antimicrobial and antifungal activities of the obtained compounds have been explored. Priorities for further research of biologically active compounds have been outlined. http://pharmed.zsmu.edu.ua/article/view/71055/67969XanthineOrganic SynthesisNMR-spectroscopyAntibacterialAntifungal Agents
collection DOAJ
language English
format Article
sources DOAJ
author D. G. Ivanchenko
spellingShingle D. G. Ivanchenko
Synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline
Aktualʹnì Pitannâ Farmacevtičnoï ì Medičnoï Nauki ta Praktiki
Xanthine
Organic Synthesis
NMR-spectroscopy
Antibacterial
Antifungal Agents
author_facet D. G. Ivanchenko
author_sort D. G. Ivanchenko
title Synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline
title_short Synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline
title_full Synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline
title_fullStr Synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline
title_full_unstemmed Synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline
title_sort synthesis, physical-chemical and biological properties of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline
publisher Zaporozhye State Medical University
series Aktualʹnì Pitannâ Farmacevtičnoï ì Medičnoï Nauki ta Praktiki
issn 2306-8094
2409-2932
publishDate 2016-08-01
description The search for new high-performance antimicrobial compounds remains one of the most important tasks of modern pharmaceutical chemistry, despite the wide range of modern natural, synthetic and semi-synthetic drugs for the treatment of infectious diseases. This is especially true for the naturally occurring compounds, new non-toxic and effective drugs can be created by their chemical modification for the treatment of various infectious pathologies. Recent researches in this area pay significant interest to new synthetic derivatives of xanthine. The aim of this paper is to elaborate simple laboratory methods of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline synthesis, unspecified in scientific papers earlier, and to study their physical, chemical and biological properties. Materials and methods of research. The melting point has been determined with the help of an open capillary method with PTP-M device. Elemental analysis has been performed with the help of the instrument Elementar Vario L cube, NMR-spectra have been taken on a spectrometer Bruker SF-400 (operating frequency of 400 MHz, solvent DMSO, internal standard – TMS). Study of antimicrobial and antifungal activity of synthesized compounds has been performed by two-fold serial dilution method. Standard test strains have been used for the study: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 885–653. Basic preparation solution has been prepared at a concentration of 1 mg in 1 mL of DMSO. Results and their discussion. Through the interaction of 8-bromotheophylline with the styrene oxide in propanol-1 environment was obtained an 8-bromo-7-(2-hydroxy-2-phenylethyl)theophylline, which under short-time heating up with primary amines of various structure or piperazine derivatives in aqueous dioxane or propanol-1 leads to the replacement of the bromine atom at the 8-position to form corresponding 8-aminosubstituted. Structure of synthesized compounds has been definitely proved by NMR-spectroscopy. Primary screening research of antimicrobial and antifungal activity of 8-aminosubstituted of 7-(2-hydroxy-2-phenylethyl)theophylline shows that these compounds reveal moderate and weak activity in concentrations 25–200 mcg/ml. Conclusions. Accessible laboratory methods have been elaborated for synthesis of 8-aminoderivatives of 7-(2-hydroxy-2-phenylethyl)theophylline. The NMR H1 spectral characteristics of the synthesized compounds have been analyzed and interpreted. Antimicrobial and antifungal activities of the obtained compounds have been explored. Priorities for further research of biologically active compounds have been outlined.
topic Xanthine
Organic Synthesis
NMR-spectroscopy
Antibacterial
Antifungal Agents
url http://pharmed.zsmu.edu.ua/article/view/71055/67969
work_keys_str_mv AT dgivanchenko synthesisphysicalchemicalandbiologicalpropertiesof8aminoderivativesof72hydroxy2phenylethyltheophylline
_version_ 1725611647312068608