Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets

In studies of voluntary movement, a most elemental quantity is the reaction time (RT) between the onset of a visual stimulus and a saccade toward it. However, this RT demonstrates extremely high variability which, in spite of extensive research, remains unexplained. It is well established that, when...

Full description

Bibliographic Details
Main Authors: Christopher K Hauser, Dantong Zhu, Terrence R Stanford, Emilio Salinas
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2018-04-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/33456
Description
Summary:In studies of voluntary movement, a most elemental quantity is the reaction time (RT) between the onset of a visual stimulus and a saccade toward it. However, this RT demonstrates extremely high variability which, in spite of extensive research, remains unexplained. It is well established that, when a visual target appears, oculomotor activity gradually builds up until a critical level is reached, at which point a saccade is triggered. Here, based on computational work and single-neuron recordings from monkey frontal eye field (FEF), we show that this rise-to-threshold process starts from a dynamic initial state that already contains other incipient, internally driven motor plans, which compete with the target-driven activity to varying degrees. The ensuing conflict resolution process, which manifests in subtle covariations between baseline activity, build-up rate, and threshold, consists of fundamentally deterministic interactions, and explains the observed RT distributions while invoking only a small amount of intrinsic randomness.
ISSN:2050-084X