Summary: | This study investigates the curved worldline of a charged particle accelerated by an electromagnetic field in flat spacetime. A new metric, which dependes on the charge-to-mass ratio and electromagnetic potential, is proposed to describe the curve characteristic of the world-line. The main result of this paper is that an equivalent equation of the Lorentz equation of motion is put forward based on a 4-dimensional Riemannian manifold defined by the metric. Using the Ricci rotation coefficients, the equivalent equation is self-consistently constructed. Additionally, the Lorentz equation of motion in the non-inertial reference frames is studied with the local Lorentz covariance of the equivalent equation. The model attempts to geometrize classical electromagnetism in the absence of the other interactions, and it is conducive to the establishment of the unified theory between electromagnetism and gravitation.
|