Summary: | The rapid growth of the network of high-voltage power transmission lines (HVPTLs) is inevitably covering more forest domains. However, no direct quantitative measurements have been reported of the effects of HVPTLs on vegetation growth. Thus, the impacts of HVPTLs on vegetation growth are uncertain. Taking one of the areas with the highest forest coverage in China as an example, the upper reaches of the Minjiang River in Fujian Province, we quantitatively analyzed the effect of HVPTLs on forest landscape fragmentation and vegetation growth using Landsat imageries and forest inventory datasets. The results revealed that 0.9% of the forests became edge habitats assuming a 150 m depth-of-edge-influence by HVPTLs, and the forest plantations were the most exposed to HVPTLs among all the forest landscape types. Habitat fragmentation was the main consequence of HVPTL installation, which can be reduced by an increase in the patch density and a decrease in the mean patch area (MA), largest patch index (LPI), and effective mesh size (MESH). In all the landscape types, the forest plantation and the non-forest land were most affected by HVPTLs, with the LPI values decreasing by 44.1 and 20.8%, respectively. The values of MESH decreased by 44.2 and 32.2%, respectively. We found an obvious increasing trend in the values of the normalized difference vegetation index (NDVI) in 2016 and NDVI growth during the period of 2007 to 2016 with an increase in the distance from HVPTL. The turning points of stability were 60 to 90 meters for HVPTL corridors and 90 to 150 meters for HVPTL pylons, which indicates that the pylons have a much greater impact on NDVI and its growth than the lines. Our research provides valuable suggestions for vegetation protection, restoration, and wildfire management after the construction of HVPTLs.
|