Modeling a Thermochemical Reactor of a Solar Refrigerator by BaCl2-NH3 Sorption Using Artificial Neural Networks and Mathematical Symmetry Groups
The aim of this work is to present a model for heat transfer, desorbed refrigerant, and pressure of an intermittent solar cooling system’s thermochemical reactor based on backpropagation neural networks and mathematical symmetry groups. In order to achieve this, a reactor was designed and built base...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/9098709 |
Summary: | The aim of this work is to present a model for heat transfer, desorbed refrigerant, and pressure of an intermittent solar cooling system’s thermochemical reactor based on backpropagation neural networks and mathematical symmetry groups. In order to achieve this, a reactor was designed and built based on the reaction of BaCl2-NH3. Experimental data from this reactor were collected, where barium chloride was used as a solid absorbent and ammonia as a refrigerant. The neural network was trained using the Levenberg–Marquardt algorithm. The correlation coefficient between experimental data and data simulated by the neural network was r = 0.9957. In the neural network’s sensitivity analysis, it was found that the inputs, reactor’s heating temperature and sorption time, influence neural network’s learning by 35% and 20%, respectively. It was also found that, by applying permutations to experimental data and using multibase mathematical symmetry groups, the neural network training algorithm converges faster. |
---|---|
ISSN: | 1024-123X 1563-5147 |