Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2021-07-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2020-0183 |
id |
doaj-819050d9b1d74959816b80dead51fd38 |
---|---|
record_format |
Article |
spelling |
doaj-819050d9b1d74959816b80dead51fd382021-10-03T07:42:25ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2021-07-0111115919710.1515/anona-2020-0183Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approachGarcke Harald0Hüttl Paul1Knopf Patrik2Fakulät für Mathematik, Universität Regensburg, 93053Regensburg, GermanyFakulät für Mathematik, Universität Regensburg, 93053Regensburg, GermanyFakulät für Mathematik, Universität Regensburg, 93053Regensburg, GermanyA cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown, for which first order necessary optimality conditions can be obtained in generic situations. Furthermore, a combined eigenvalue and compliance optimization is discussed.https://doi.org/10.1515/anona-2020-0183shape optimizationtopology optimizationeigenvalue problemlinear elasticitymulti-phase-field model35p0549q1049r0574b0574p0574p15 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Garcke Harald Hüttl Paul Knopf Patrik |
spellingShingle |
Garcke Harald Hüttl Paul Knopf Patrik Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach Advances in Nonlinear Analysis shape optimization topology optimization eigenvalue problem linear elasticity multi-phase-field model 35p05 49q10 49r05 74b05 74p05 74p15 |
author_facet |
Garcke Harald Hüttl Paul Knopf Patrik |
author_sort |
Garcke Harald |
title |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_short |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_full |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_fullStr |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_full_unstemmed |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach |
title_sort |
shape and topology optimization involving the eigenvalues of an elastic structure: a multi-phase-field approach |
publisher |
De Gruyter |
series |
Advances in Nonlinear Analysis |
issn |
2191-9496 2191-950X |
publishDate |
2021-07-01 |
description |
A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown, for which first order necessary optimality conditions can be obtained in generic situations. Furthermore, a combined eigenvalue and compliance optimization is discussed. |
topic |
shape optimization topology optimization eigenvalue problem linear elasticity multi-phase-field model 35p05 49q10 49r05 74b05 74p05 74p15 |
url |
https://doi.org/10.1515/anona-2020-0183 |
work_keys_str_mv |
AT garckeharald shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach AT huttlpaul shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach AT knopfpatrik shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach |
_version_ |
1716846275224141824 |