Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach

A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown...

Full description

Bibliographic Details
Main Authors: Garcke Harald, Hüttl Paul, Knopf Patrik
Format: Article
Language:English
Published: De Gruyter 2021-07-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2020-0183
id doaj-819050d9b1d74959816b80dead51fd38
record_format Article
spelling doaj-819050d9b1d74959816b80dead51fd382021-10-03T07:42:25ZengDe GruyterAdvances in Nonlinear Analysis2191-94962191-950X2021-07-0111115919710.1515/anona-2020-0183Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approachGarcke Harald0Hüttl Paul1Knopf Patrik2Fakulät für Mathematik, Universität Regensburg, 93053Regensburg, GermanyFakulät für Mathematik, Universität Regensburg, 93053Regensburg, GermanyFakulät für Mathematik, Universität Regensburg, 93053Regensburg, GermanyA cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown, for which first order necessary optimality conditions can be obtained in generic situations. Furthermore, a combined eigenvalue and compliance optimization is discussed.https://doi.org/10.1515/anona-2020-0183shape optimizationtopology optimizationeigenvalue problemlinear elasticitymulti-phase-field model35p0549q1049r0574b0574p0574p15
collection DOAJ
language English
format Article
sources DOAJ
author Garcke Harald
Hüttl Paul
Knopf Patrik
spellingShingle Garcke Harald
Hüttl Paul
Knopf Patrik
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
Advances in Nonlinear Analysis
shape optimization
topology optimization
eigenvalue problem
linear elasticity
multi-phase-field model
35p05
49q10
49r05
74b05
74p05
74p15
author_facet Garcke Harald
Hüttl Paul
Knopf Patrik
author_sort Garcke Harald
title Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_short Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_full Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_fullStr Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_full_unstemmed Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach
title_sort shape and topology optimization involving the eigenvalues of an elastic structure: a multi-phase-field approach
publisher De Gruyter
series Advances in Nonlinear Analysis
issn 2191-9496
2191-950X
publishDate 2021-07-01
description A cost function involving the eigenvalues of an elastic structure is optimized using a phase-field approach, which allows for topology changes and multiple materials.We show continuity and differentiability of simple eigenvalues in the phase-field context. Existence of global minimizers can be shown, for which first order necessary optimality conditions can be obtained in generic situations. Furthermore, a combined eigenvalue and compliance optimization is discussed.
topic shape optimization
topology optimization
eigenvalue problem
linear elasticity
multi-phase-field model
35p05
49q10
49r05
74b05
74p05
74p15
url https://doi.org/10.1515/anona-2020-0183
work_keys_str_mv AT garckeharald shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach
AT huttlpaul shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach
AT knopfpatrik shapeandtopologyoptimizationinvolvingtheeigenvaluesofanelasticstructureamultiphasefieldapproach
_version_ 1716846275224141824