Transformation of a Thermostable G-Quadruplex Structure into DNA Duplex Driven by Reverse Gyrase

Reverse gyrase is a topoisomerase that can introduce positive supercoils to its substrate DNA. It is demonstrated in our studies that a highly thermal stable G-quadruplex structure in a mini-plasmid DNA was transformed into its duplex conformation after a treatment with reverse gyrase. The structura...

Full description

Bibliographic Details
Main Authors: Dawei Li, Qiang Wang, Yun Liu, Kun Liu, Qiang Zhuge, Bei Lv
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/22/11/2021
Description
Summary:Reverse gyrase is a topoisomerase that can introduce positive supercoils to its substrate DNA. It is demonstrated in our studies that a highly thermal stable G-quadruplex structure in a mini-plasmid DNA was transformed into its duplex conformation after a treatment with reverse gyrase. The structural difference of the topoisomers were verified and analyzed by gel electrophoresis, atomic force microscopy examination, and endonuclease digestion assays. All evidence suggested that the overwinding structure of positive supercoil could provide a driven force to disintegrate G-quadruplex and reform duplex. The results of our studies could suggest that hyperthermophiles might use reverse gyrase to manipulate the disintegration of non-B DNA structures and safekeep their genomic information.
ISSN:1420-3049