Summary: | Porous polymer dielectric materials have been developed to increase the sensitivity of capacitive pressure sensors, so that they might expand capacitive sensor use, and promote the realization of the advantages of this class of sensor in further fields. However, their use has not been demonstrated in physiological monitoring applications such as respiration monitoring and body position detection during sleep; an area in need of unmet medical attention for conditions such as sleep apnea. Here, we develop and characterize a sensor comprised of a poly dimethylsiloxane (PDMS) sponge dielectric layer, and PDMS/carbon black (CB) blend electrode layers, with suitable compliance and sensitivity for integration in mattresses, pillows, and athletic shoe insoles. With relatively high pressure sensitivity (~0.1 kPa<sup>−1</sup>) and mechanical robustness, this sensor was able to fulfill a wide variety of roles, including athletic monitoring in an impact mechanics scenario, by recording heel pressure during running and walking, and physiological monitoring, by detecting head position and respiration of a subject lying on a pad and pillow. The sensor detected considerably greater relative signal changes than those reported in recent capacitive sensor studies for heel pressure, and for a comparably minimal, resistive sensor during respiration, in line with its enhanced sensitivity.
|