Hall effect in charged conducting ferroelectric domain walls
Conduction in ferroelectric domain walls is now an established phenomenon, yet fundamental aspects of transport physics remain elusive. Here, Campbellet al. report the type, density and mobility of carriers in conducting domain walls in ytterbium manganite using nanoscale Hall effect measurements.
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2016-12-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/ncomms13764 |
Summary: | Conduction in ferroelectric domain walls is now an established phenomenon, yet fundamental aspects of transport physics remain elusive. Here, Campbellet al. report the type, density and mobility of carriers in conducting domain walls in ytterbium manganite using nanoscale Hall effect measurements. |
---|---|
ISSN: | 2041-1723 |