TOTAL COLUMN METHANE RETRIEVALS USING THE TROPOSPHERIC INFRARED MAPPING SPECTROMETER OVER SUNGLINT

Because it is a greenhouse gas, the detection of methane concentrations is a global issue. Additionally, the presence of methane is indicative of potential valuable petroleum and natural gas deposits. Therefore methane seep detection is useful for petroleum exploration around the world. The detectio...

Full description

Bibliographic Details
Main Authors: N. Larsen, J. Kumer, R. Rairden, K. Jablonski
Format: Article
Language:English
Published: Copernicus Publications 2012-07-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXIX-B8/121/2012/isprsarchives-XXXIX-B8-121-2012.pdf
Description
Summary:Because it is a greenhouse gas, the detection of methane concentrations is a global issue. Additionally, the presence of methane is indicative of potential valuable petroleum and natural gas deposits. Therefore methane seep detection is useful for petroleum exploration around the world. The detection of methane, and other absorbing gases, over water is an issue for passive systems because one is seeking to detect an absorbing gas over an absorbing surface. The solution to this dilemma is to use the sun/sensor geometry for sun glint off of water to measure the absorbing gas over a reflecting surface, and therefore significantly increase the signal to noise of the measurement being taken. In September of 2010 Lockheed Martin performed a proof of concept by demonstrating from an airship over San Francisco Bay the capability of the Tropospheric Infrared Mapping Spectrometer's (TIMS) hyper spectral sensor to passively measure methane, CO, and water vapor over sunglint water. The Lockheed Martin prototype TIMS sensor system is a hyper spectral grating spectrometer instrument that operates in the 2.3 micron spectral region at 0.25 cm<sup>-1</sup> resolution. The Lockheed Martin retrieval algorithm developed applies the kCARTA (kCompressed Atmospheric Radiative Transfer Algorithm) with Jacobians, with the HITRAN 2008 lineshape parameters, to retrieve the total column amount of atmospheric species along with the calibrated TIMS sensors radiometric input. A cell with known amount of methane was placed into the input to the TIMS to simulate atmospheric enhancements near the water surface. The amount in the cell was retrieved well within the uncertainty of 1% of the amount in the cell. Multi frame retrievals on data in which the cell was not placed into the input beam demonstrated 1% precision. In addition, in situ surface measurements were done over a landfill park, where measurements of methane were taken over known hotspots. This research allows for the future development of a system to measure methane, and other gases, for climate and petroleum exploration capabilities.
ISSN:1682-1750
2194-9034