Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators

In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SA...

Full description

Bibliographic Details
Main Authors: Wen Chen, Linwei Zhang, Shangshu Yang, Wenhan Jia, Songsong Zhang, Yuandong Gu, Liang Lou, Guoqiang Wu
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/12/9/1118
Description
Summary:In this work, three-dimensional finite element analysis (3D FEA) of quasi-surface acoustic wave (QSAW) resonators with high accuracy is reported. The QSAW resonators consist of simple molybdenum (Mo) interdigitated transducers (IDT) on solidly mounted stacked layers of AlN/Mo/Si. Different to the SAW resonators operating in the piezoelectric substrates, the reported resonators are operating in the QSAW mode, since the IDT-excited Rayleigh waves not only propagate in the thin piezoelectric layer of AlN, but also penetrate the Si substrate. Compared with the commonly used two-dimensional (2D) FEA approach, the 3D FEA method reported in this work shows high accuracy, in terms of the resonant frequency, temperature coefficient of frequency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>C</mi><mi>F</mi></mrow></semantics></math></inline-formula>), effective coupling coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>k</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula>) and frequency response. The fabricated QSAW resonator has demonstrated a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>k</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mn>2</mn></msubsup></semantics></math></inline-formula> of 0.291%, series resonant frequency of 422.50 MHz, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mi>C</mi><mi>F</mi></mrow></semantics></math></inline-formula> of −23.418 ppm/°C in the temperature range between 30 °C and 150 °C, for the design of wavelength at 10.4 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>m. The measurement results agree well with the simulations. Moreover, the QSAW resonators are more mechanically robust than lamb wave devices and can be integrated with silicon-based film bulk acoustic resonator (FBAR) devices to offer multi-frequency function in a single chip.
ISSN:2072-666X