Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological Spaces

By means of the residual implication on a frame <i>L</i>, a degree approach to <i>L</i>-continuity and <i>L</i>-closedness for mappings between <i>L</i>-cotopological spaces are defined and their properties are investigated systematically. In addition,...

Full description

Bibliographic Details
Main Authors: Zhenyu Xiu, Qinghua Li
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/11/1013
id doaj-815662bf372a42b980a9c0635accfcce
record_format Article
spelling doaj-815662bf372a42b980a9c0635accfcce2020-11-25T01:56:34ZengMDPI AGMathematics2227-73902019-10-01711101310.3390/math7111013math7111013Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological SpacesZhenyu Xiu0Qinghua Li1College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610000, ChinaSchool of Mathematics and Information Sciences, Yantai University, Yantai 264005, ChinaBy means of the residual implication on a frame <i>L</i>, a degree approach to <i>L</i>-continuity and <i>L</i>-closedness for mappings between <i>L</i>-cotopological spaces are defined and their properties are investigated systematically. In addition, in the situation of <i>L</i>-topological spaces, degrees of <i>L</i>-continuity and of <i>L</i>-openness for mappings are proposed and their connections are studied. Moreover, if <i>L</i> is a frame with an order-reversing involution <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>b</mi> <mo>&#8242;</mo> </msup> <mo>=</mo> <mi>b</mi> <mo>&#8594;</mo> <mo>&#10178;</mo> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>&#8712;</mo> <mi>L</mi> </mrow> </semantics> </math> </inline-formula>, then degrees of <i>L</i>-continuity for mappings between <i>L</i>-cotopological spaces and degrees of <i>L</i>-continuity for mappings between <i>L</i>-topological spaces are equivalent.https://www.mdpi.com/2227-7390/7/11/1013<i>l</i>-cotopological space<i>l</i>-topological spacedegree of <i>l</i>-continuitydegree of <i>l</i>-closednessdegree of <i>l</i>-openness
collection DOAJ
language English
format Article
sources DOAJ
author Zhenyu Xiu
Qinghua Li
spellingShingle Zhenyu Xiu
Qinghua Li
Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological Spaces
Mathematics
<i>l</i>-cotopological space
<i>l</i>-topological space
degree of <i>l</i>-continuity
degree of <i>l</i>-closedness
degree of <i>l</i>-openness
author_facet Zhenyu Xiu
Qinghua Li
author_sort Zhenyu Xiu
title Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological Spaces
title_short Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological Spaces
title_full Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological Spaces
title_fullStr Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological Spaces
title_full_unstemmed Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological Spaces
title_sort degrees of <i>l</i>-continuity for mappings between <i>l</i>-topological spaces
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-10-01
description By means of the residual implication on a frame <i>L</i>, a degree approach to <i>L</i>-continuity and <i>L</i>-closedness for mappings between <i>L</i>-cotopological spaces are defined and their properties are investigated systematically. In addition, in the situation of <i>L</i>-topological spaces, degrees of <i>L</i>-continuity and of <i>L</i>-openness for mappings are proposed and their connections are studied. Moreover, if <i>L</i> is a frame with an order-reversing involution <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>b</mi> <mo>&#8242;</mo> </msup> <mo>=</mo> <mi>b</mi> <mo>&#8594;</mo> <mo>&#10178;</mo> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>&#8712;</mo> <mi>L</mi> </mrow> </semantics> </math> </inline-formula>, then degrees of <i>L</i>-continuity for mappings between <i>L</i>-cotopological spaces and degrees of <i>L</i>-continuity for mappings between <i>L</i>-topological spaces are equivalent.
topic <i>l</i>-cotopological space
<i>l</i>-topological space
degree of <i>l</i>-continuity
degree of <i>l</i>-closedness
degree of <i>l</i>-openness
url https://www.mdpi.com/2227-7390/7/11/1013
work_keys_str_mv AT zhenyuxiu degreesofilicontinuityformappingsbetweenilitopologicalspaces
AT qinghuali degreesofilicontinuityformappingsbetweenilitopologicalspaces
_version_ 1724979272064434176