Degrees of <i>L</i>-Continuity for Mappings between <i>L</i>-Topological Spaces

By means of the residual implication on a frame <i>L</i>, a degree approach to <i>L</i>-continuity and <i>L</i>-closedness for mappings between <i>L</i>-cotopological spaces are defined and their properties are investigated systematically. In addition,...

Full description

Bibliographic Details
Main Authors: Zhenyu Xiu, Qinghua Li
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/11/1013
Description
Summary:By means of the residual implication on a frame <i>L</i>, a degree approach to <i>L</i>-continuity and <i>L</i>-closedness for mappings between <i>L</i>-cotopological spaces are defined and their properties are investigated systematically. In addition, in the situation of <i>L</i>-topological spaces, degrees of <i>L</i>-continuity and of <i>L</i>-openness for mappings are proposed and their connections are studied. Moreover, if <i>L</i> is a frame with an order-reversing involution <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>&#8242;</mo> </msup> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>b</mi> <mo>&#8242;</mo> </msup> <mo>=</mo> <mi>b</mi> <mo>&#8594;</mo> <mo>&#10178;</mo> </mrow> </semantics> </math> </inline-formula> for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>b</mi> <mo>&#8712;</mo> <mi>L</mi> </mrow> </semantics> </math> </inline-formula>, then degrees of <i>L</i>-continuity for mappings between <i>L</i>-cotopological spaces and degrees of <i>L</i>-continuity for mappings between <i>L</i>-topological spaces are equivalent.
ISSN:2227-7390