Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies

Abstract Rock fractures and veins have been well documented by the Curiosity rover in the lithologies within Gale crater, Mars, and an understanding of the rock mechanical properties of Mars analog samples will improve our capabilities to predict fracture formation conditions (e.g., burial depth and...

Full description

Bibliographic Details
Main Authors: R. E. Kronyak, C. Arndt, L. C. Kah, S. C. TerMaath
Format: Article
Language:English
Published: American Geophysical Union (AGU) 2020-09-01
Series:Earth and Space Science
Subjects:
Online Access:https://doi.org/10.1029/2019EA000926
id doaj-81558dc949d34544946f8f20173efe83
record_format Article
spelling doaj-81558dc949d34544946f8f20173efe832021-08-21T13:31:46ZengAmerican Geophysical Union (AGU)Earth and Space Science2333-50842020-09-0179n/an/a10.1029/2019EA000926Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary LithologiesR. E. Kronyak0C. Arndt1L. C. Kah2S. C. TerMaath3Department of Earth and Planetary Sciences University of Tennessee, Knoxville Knoxville TN USADepartment of Mechanical, Aerospace, and Biomedical Engineering University of Tennessee, Knoxville Knoxville TN USADepartment of Earth and Planetary Sciences University of Tennessee, Knoxville Knoxville TN USADepartment of Mechanical, Aerospace, and Biomedical Engineering University of Tennessee, Knoxville Knoxville TN USAAbstract Rock fractures and veins have been well documented by the Curiosity rover in the lithologies within Gale crater, Mars, and an understanding of the rock mechanical properties of Mars analog samples will improve our capabilities to predict fracture formation conditions (e.g., burial depth and influence of fluids). Data collected by Curiosity's drill allow estimation of unconfined compressive strength (UCS) for rocks that have been sampled by the drill. These estimates reveal that the drilled rock types are considerably weak. Qualitative assessments of rock types that were not drilled, however, suggest that stronger lithologies also exist within Gale crater. Here we integrate experimental testing, computational simulation, and uncertainty quantification to evaluate a predictive approach using the UCS obtained from the rover to determine a suite of mechanical properties for Gale lithologies. This method is demonstrated using analog rocks, specifically iron‐cemented sandstone and poorly lithified mudstone. The range of properties determined from sandstone testing is consistent with very strong terrestrial lithologies, and mudstone testing is consistent with extremely weak lithologies, both representative of rock types identified in Gale crater. We evaluate the use of established correlations between measured properties and quantify the uncertainty in using predicted properties to simulate fracture through analog lithologies. Sensitivity analysis indicates the properties of tensile strength and fracture energy derived from the UCS are highly influential properties in predicting fracture. The predictive approach was successful for a well‐sorted and well‐cemented fine sandstone with no visible porosity and exhibited substantially large errors for analog eolian siltstone lithologies.https://doi.org/10.1029/2019EA000926Mars analogGale cratermechanical propertiesstrengthsensitivity analysis
collection DOAJ
language English
format Article
sources DOAJ
author R. E. Kronyak
C. Arndt
L. C. Kah
S. C. TerMaath
spellingShingle R. E. Kronyak
C. Arndt
L. C. Kah
S. C. TerMaath
Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies
Earth and Space Science
Mars analog
Gale crater
mechanical properties
strength
sensitivity analysis
author_facet R. E. Kronyak
C. Arndt
L. C. Kah
S. C. TerMaath
author_sort R. E. Kronyak
title Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies
title_short Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies
title_full Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies
title_fullStr Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies
title_full_unstemmed Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies
title_sort predicting the mechanical and fracture properties of mars analog sedimentary lithologies
publisher American Geophysical Union (AGU)
series Earth and Space Science
issn 2333-5084
publishDate 2020-09-01
description Abstract Rock fractures and veins have been well documented by the Curiosity rover in the lithologies within Gale crater, Mars, and an understanding of the rock mechanical properties of Mars analog samples will improve our capabilities to predict fracture formation conditions (e.g., burial depth and influence of fluids). Data collected by Curiosity's drill allow estimation of unconfined compressive strength (UCS) for rocks that have been sampled by the drill. These estimates reveal that the drilled rock types are considerably weak. Qualitative assessments of rock types that were not drilled, however, suggest that stronger lithologies also exist within Gale crater. Here we integrate experimental testing, computational simulation, and uncertainty quantification to evaluate a predictive approach using the UCS obtained from the rover to determine a suite of mechanical properties for Gale lithologies. This method is demonstrated using analog rocks, specifically iron‐cemented sandstone and poorly lithified mudstone. The range of properties determined from sandstone testing is consistent with very strong terrestrial lithologies, and mudstone testing is consistent with extremely weak lithologies, both representative of rock types identified in Gale crater. We evaluate the use of established correlations between measured properties and quantify the uncertainty in using predicted properties to simulate fracture through analog lithologies. Sensitivity analysis indicates the properties of tensile strength and fracture energy derived from the UCS are highly influential properties in predicting fracture. The predictive approach was successful for a well‐sorted and well‐cemented fine sandstone with no visible porosity and exhibited substantially large errors for analog eolian siltstone lithologies.
topic Mars analog
Gale crater
mechanical properties
strength
sensitivity analysis
url https://doi.org/10.1029/2019EA000926
work_keys_str_mv AT rekronyak predictingthemechanicalandfracturepropertiesofmarsanalogsedimentarylithologies
AT carndt predictingthemechanicalandfracturepropertiesofmarsanalogsedimentarylithologies
AT lckah predictingthemechanicalandfracturepropertiesofmarsanalogsedimentarylithologies
AT sctermaath predictingthemechanicalandfracturepropertiesofmarsanalogsedimentarylithologies
_version_ 1721200413394337792