Challenge Accepted? Individual Performance Gains for Motor Imagery Practice with Humanoid Robotic EEG Neurofeedback

Optimizing neurofeedback (NF) and brain–computer interface (BCI) implementations constitutes a challenge across many fields and has so far been addressed by, among others, advancing signal processing methods or predicting the user’s control ability from neurophysiological or psychological measures....

Full description

Bibliographic Details
Main Authors: Mareike Daeglau, Frank Wallhoff, Stefan Debener, Ignatius Sapto Condro, Cornelia Kranczioch, Catharina Zich
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Sensors
Subjects:
bci
Online Access:https://www.mdpi.com/1424-8220/20/6/1620
Description
Summary:Optimizing neurofeedback (NF) and brain–computer interface (BCI) implementations constitutes a challenge across many fields and has so far been addressed by, among others, advancing signal processing methods or predicting the user’s control ability from neurophysiological or psychological measures. In comparison, how context factors influence NF/BCI performance is largely unexplored. We here investigate whether a competitive multi-user condition leads to better NF/BCI performance than a single-user condition. We implemented a foot motor imagery (MI) NF with mobile electroencephalography (EEG). Twenty-five healthy, young participants steered a humanoid robot in a single-user condition and in a competitive multi-user race condition using a second humanoid robot and a pseudo competitor. NF was based on 8–30 Hz relative event-related desynchronization (ERD) over sensorimotor areas. There was no significant difference between the ERD during the competitive multi-user condition and the single-user condition but considerable inter-individual differences regarding which condition yielded a stronger ERD. Notably, the stronger condition could be predicted from the participants’ MI-induced ERD obtained before the NF blocks. Our findings may contribute to enhance the performance of NF/BCI implementations and highlight the necessity of individualizing context factors.
ISSN:1424-8220