Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals

Detection of outliers in radar signals is a considerable challenge in maritime surveillance applications. High-Frequency Surface-Wave (HFSW) radars have attracted significant interest as potential tools for long-range target identification and outlier detection at over-the-horizon (OTH) distances. H...

Full description

Bibliographic Details
Main Authors: Eftychios Protopapadakis, Athanasios Voulodimos, Anastasios Doulamis, Nikolaos Doulamis, Dimitrios Dres, Matthaios Bimpas
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Computational Intelligence and Neuroscience
Online Access:http://dx.doi.org/10.1155/2017/5891417
Description
Summary:Detection of outliers in radar signals is a considerable challenge in maritime surveillance applications. High-Frequency Surface-Wave (HFSW) radars have attracted significant interest as potential tools for long-range target identification and outlier detection at over-the-horizon (OTH) distances. However, a number of disadvantages, such as their low spatial resolution and presence of clutter, have a negative impact on their accuracy. In this paper, we explore the applicability of deep learning techniques for detecting deviations from the norm in behavioral patterns of vessels (outliers) as they are tracked from an OTH radar. The proposed methodology exploits the nonlinear mapping capabilities of deep stacked autoencoders in combination with density-based clustering. A comparative experimental evaluation of the approach shows promising results in terms of the proposed methodology’s performance.
ISSN:1687-5265
1687-5273