Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI)
Abstract Genetically-encoded calcium indicators (GECIs) are essential for studying brain function, while voltage indicators (GEVIs) are slowly permeating neuroscience. Fundamentally, GECI and GEVI measure different things, but both are advertised as reporters of “neuronal activity”. We quantified th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-03-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-84651-6 |
id |
doaj-80fd080208044f89b2e5209394d636ca |
---|---|
record_format |
Article |
spelling |
doaj-80fd080208044f89b2e5209394d636ca2021-03-11T12:15:35ZengNature Publishing GroupScientific Reports2045-23222021-03-0111111510.1038/s41598-021-84651-6Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI)Mei Hong Zhu0Jinyoung Jang1Milena M. Milosevic2Srdjan D. Antic3Institute for Systems Genomics, Department of Neuroscience, UConn School of MedicineInstitute for Systems Genomics, Department of Neuroscience, UConn School of MedicineInstitute for Systems Genomics, Department of Neuroscience, UConn School of MedicineInstitute for Systems Genomics, Department of Neuroscience, UConn School of MedicineAbstract Genetically-encoded calcium indicators (GECIs) are essential for studying brain function, while voltage indicators (GEVIs) are slowly permeating neuroscience. Fundamentally, GECI and GEVI measure different things, but both are advertised as reporters of “neuronal activity”. We quantified the similarities and differences between calcium and voltage imaging modalities, in the context of population activity (without single-cell resolution) in brain slices. GECI optical signals showed 8–20 times better SNR than GEVI signals, but GECI signals attenuated more with distance from the stimulation site. We show the exact temporal discrepancy between calcium and voltage imaging modalities, and discuss the misleading aspects of GECI imaging. For example, population voltage signals already repolarized to the baseline (~ disappeared), while the GECI signals were still near maximum. The region-to-region propagation latencies, easily captured by GEVI imaging, are blurred in GECI imaging. Temporal summation of GECI signals is highly exaggerated, causing uniform voltage events produced by neuronal populations to appear with highly variable amplitudes in GECI population traces. Relative signal amplitudes in GECI recordings are thus misleading. In simultaneous recordings from multiple sites, the compound EPSP signals in cortical neuropil (population signals) are less distorted by GEVIs than by GECIs.https://doi.org/10.1038/s41598-021-84651-6 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mei Hong Zhu Jinyoung Jang Milena M. Milosevic Srdjan D. Antic |
spellingShingle |
Mei Hong Zhu Jinyoung Jang Milena M. Milosevic Srdjan D. Antic Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI) Scientific Reports |
author_facet |
Mei Hong Zhu Jinyoung Jang Milena M. Milosevic Srdjan D. Antic |
author_sort |
Mei Hong Zhu |
title |
Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI) |
title_short |
Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI) |
title_full |
Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI) |
title_fullStr |
Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI) |
title_full_unstemmed |
Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI) |
title_sort |
population imaging discrepancies between a genetically-encoded calcium indicator (geci) versus a genetically-encoded voltage indicator (gevi) |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2021-03-01 |
description |
Abstract Genetically-encoded calcium indicators (GECIs) are essential for studying brain function, while voltage indicators (GEVIs) are slowly permeating neuroscience. Fundamentally, GECI and GEVI measure different things, but both are advertised as reporters of “neuronal activity”. We quantified the similarities and differences between calcium and voltage imaging modalities, in the context of population activity (without single-cell resolution) in brain slices. GECI optical signals showed 8–20 times better SNR than GEVI signals, but GECI signals attenuated more with distance from the stimulation site. We show the exact temporal discrepancy between calcium and voltage imaging modalities, and discuss the misleading aspects of GECI imaging. For example, population voltage signals already repolarized to the baseline (~ disappeared), while the GECI signals were still near maximum. The region-to-region propagation latencies, easily captured by GEVI imaging, are blurred in GECI imaging. Temporal summation of GECI signals is highly exaggerated, causing uniform voltage events produced by neuronal populations to appear with highly variable amplitudes in GECI population traces. Relative signal amplitudes in GECI recordings are thus misleading. In simultaneous recordings from multiple sites, the compound EPSP signals in cortical neuropil (population signals) are less distorted by GEVIs than by GECIs. |
url |
https://doi.org/10.1038/s41598-021-84651-6 |
work_keys_str_mv |
AT meihongzhu populationimagingdiscrepanciesbetweenageneticallyencodedcalciumindicatorgeciversusageneticallyencodedvoltageindicatorgevi AT jinyoungjang populationimagingdiscrepanciesbetweenageneticallyencodedcalciumindicatorgeciversusageneticallyencodedvoltageindicatorgevi AT milenammilosevic populationimagingdiscrepanciesbetweenageneticallyencodedcalciumindicatorgeciversusageneticallyencodedvoltageindicatorgevi AT srdjandantic populationimagingdiscrepanciesbetweenageneticallyencodedcalciumindicatorgeciversusageneticallyencodedvoltageindicatorgevi |
_version_ |
1724224601585614848 |