On Matlis dualizing modules

We consider rings admitting a Matlis dualizing module E. We argue that if R admits two such dualizing modules, then a module is reflexive with respect to one if and only if it is reflexive with respect to the other. Using this fact we argue that the number (whether finite or infinite) of distinct d...

Full description

Bibliographic Details
Main Authors: Edgar E. Enochs, J. A. López-Ramos, B. Torrecillas
Format: Article
Language:English
Published: Hindawi Limited 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202109203
id doaj-80f19d9e342b466199c4279daa20f517
record_format Article
spelling doaj-80f19d9e342b466199c4279daa20f5172020-11-24T22:27:27ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252002-01-01301165966510.1155/S0161171202109203On Matlis dualizing modulesEdgar E. Enochs0J. A. López-Ramos1B. Torrecillas2Department of Mathematics, University of Kentucky, Lexington, KY 40506, USADepartamento de Algebra y Análisis Matemático, Universidad de Almería, Almería 04120, SpainDepartamento de Algebra y Análisis Matemático, Universidad de Almería, Almería 04120, SpainWe consider rings admitting a Matlis dualizing module E. We argue that if R admits two such dualizing modules, then a module is reflexive with respect to one if and only if it is reflexive with respect to the other. Using this fact we argue that the number (whether finite or infinite) of distinct dualizing modules equals the number of distinct invertible (R,R)-bimodules. We show by example that this number can be greater than one.http://dx.doi.org/10.1155/S0161171202109203
collection DOAJ
language English
format Article
sources DOAJ
author Edgar E. Enochs
J. A. López-Ramos
B. Torrecillas
spellingShingle Edgar E. Enochs
J. A. López-Ramos
B. Torrecillas
On Matlis dualizing modules
International Journal of Mathematics and Mathematical Sciences
author_facet Edgar E. Enochs
J. A. López-Ramos
B. Torrecillas
author_sort Edgar E. Enochs
title On Matlis dualizing modules
title_short On Matlis dualizing modules
title_full On Matlis dualizing modules
title_fullStr On Matlis dualizing modules
title_full_unstemmed On Matlis dualizing modules
title_sort on matlis dualizing modules
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2002-01-01
description We consider rings admitting a Matlis dualizing module E. We argue that if R admits two such dualizing modules, then a module is reflexive with respect to one if and only if it is reflexive with respect to the other. Using this fact we argue that the number (whether finite or infinite) of distinct dualizing modules equals the number of distinct invertible (R,R)-bimodules. We show by example that this number can be greater than one.
url http://dx.doi.org/10.1155/S0161171202109203
work_keys_str_mv AT edgareenochs onmatlisdualizingmodules
AT jalopezramos onmatlisdualizingmodules
AT btorrecillas onmatlisdualizingmodules
_version_ 1725749927820132352