Development of an Optical Gas Leak Sensor for Detecting Ethylene, Dimethyl Ether and Methane

In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-ty...

Full description

Bibliographic Details
Main Authors: Wendong Zhang, Ting Liang, Chenyang Xue, Jun Liu, Dong Sun, Xiangdong Pei, Simin Zhu, Qiulin Tan, Jijun Xiong
Format: Article
Language:English
Published: MDPI AG 2013-03-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/13/4/4157
Description
Summary:In this paper, we present an approach to develop an optical gas leak sensor that can be used to measure ethylene, dimethyl ether, and methane. The sensor is designed based on the principles of IR absorption spectrum detection, and comprises two crossed elliptical surfaces with a folded reflection-type optical path. We first analyze the optical path and the use of this structure to design a miniature gas sensor. The proposed sensor includes two detectors (one to acquire the reference signal and the other for the response signal), the light source, and the filter, all of which are integrated in a miniature gold-plated chamber. We also designed a signal detection device to extract the sensor signal and a microprocessor to calculate and control the entire process. The produced sensor prototype had an accuracy of ±0.05%. Experiments which simulate the transportation of hazardous chemicals demonstrated that the developed sensor exhibited a good dynamic response and adequately met technical requirements.
ISSN:1424-8220