Summary: | This article presents a dynamic spatial model of the development of a charging infrastructure for electric vehicles in the German metropolitan region of Stuttgart. The model consists of several sub-models whose functioning and interactions are explained in detail. The first sub-model simulates the time-spatial development of electric vehicle ownership. The output of this module is used by the second component that determines the resulting demand for charging stations. To quantify this demand, the necessary utilisation of charging stations to allow for the profitability of the infrastructure is calculated. A final processing step simulates the mobility of EVs throughout the Region Stuttgart, and thus allows allocating the need for charging stations in space. We used our model to generate several scenarios of the development of a charging infrastructure in the Region Stuttgart until 2020. The main finding of this work is that the number of public charging stations needed for the region in the long run is quite low. If too many charging stations are installed the infrastructure will be under-utilized and thus cannot be operated economically. The simulation runs show that the installation of public charging infrastructure should be focused on the few biggest urban centres of the region. The scenarios also show that publicly accessible charging stations form only a minor part of the overall number of charging stations. Additionally, it can be seen that the exponential growth of electric vehicle ownership, with very few vehicles at the beginning, but large gains after a few years, requires high flexibility from stakeholders involved in the implementation of charging infrastructure for electric vehicles.
|