Summary: | The quantum dot is a kind of nanoparticle whose dimension is smaller than the size of a typical nanoparticle ranging from tens of nanometers to a few hundredths of nanometers. The quantum mechanical behavior associated with the quantum dot displays different optical and electronic properties, enabling the quantum dot to find potential applications in a multitude of areas such as solar cells, light-emitting diodes, lasers, and biomedical applications. The objective of this investigation is to explore its fundamentals, synthesis, and applications, especially in the healthcare domain. We have discussed the quantum dot synthesis techniques using chemical methods, namely, wet-chemical methods and vapor-phase methods and plasma processing methods, namely, an ion sputtering method and plasma-enhanced chemical vapor deposition method. We have thoroughly investigated the application of quantum dots in imaging, diagnostics, and gene therapy areas. A significant outcome of this review is to propose quantum dots as a new modality in the treatment of cancer and gene therapeutics in the healthcare domain and the potentials of artificial intelligence to improve their performance via the applications of neural networks.
|