Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications
Abstract A comprehensive study about the spread of COVID-19 cases in Turkey and South Africa has been presented in this paper. An exhaustive statistical analysis was performed using data collected from Turkey and South Africa within the period of 11 March 2020 to 3 May 2020 and 05 March and 3 of May...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-11-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13662-020-03095-w |
id |
doaj-80d1cffb6fd149afb0e88b36e160a47b |
---|---|
record_format |
Article |
spelling |
doaj-80d1cffb6fd149afb0e88b36e160a47b2020-12-27T12:18:17ZengSpringerOpenAdvances in Difference Equations1687-18472020-11-012020118910.1186/s13662-020-03095-wMathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applicationsAbdon Atangana0Seda İğret Araz1Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free StateDepartment of Mathematic Education, Faculty of Education, Siirt UniversityAbstract A comprehensive study about the spread of COVID-19 cases in Turkey and South Africa has been presented in this paper. An exhaustive statistical analysis was performed using data collected from Turkey and South Africa within the period of 11 March 2020 to 3 May 2020 and 05 March and 3 of May, respectively. It was observed that in the case of Turkey, a negative Spearman correlation for the number of infected class and a positive Spearman correlation for both the number of deaths and recoveries were obtained. This implied that the daily infections could decrease, while the daily deaths and number of recovered people could increase under current conditions. In the case of South Africa, a negative Spearman correlation for both daily deaths and daily infected people were obtained, indicating that these numbers may decrease if the current conditions are maintained. The utilization of a statistical technique predicted the daily number of infected, recovered, and dead people for each country; and three results were obtained for Turkey, namely an upper boundary, a prediction from current situation and lower boundary. The histograms of the daily number of newly infected, recovered and death showed a sign of lognormal and normal distribution, which is presented using the Bell curving method parameters estimation. A new mathematical model COVID-19 comprised of nine classes was suggested; of which a formula of the reproductive number, well-poseness of the solutions and the stability analysis were presented in detail. The suggested model was further extended to the scope of nonlocal operators for each case; whereby a numerical method was used to provide numerical solutions, and simulations were performed for different non-integer numbers. Additionally, sections devoted to control optimal and others dedicated to compare cases between Turkey and South Africa with the aim to comprehend why there are less numbers of deaths and infected people in South Africa than Turkey were presented in detail.https://doi.org/10.1186/s13662-020-03095-wStatistical analysisBell curvePredictionNew COVID-19 modelNonlocal operatorsOptimal control |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Abdon Atangana Seda İğret Araz |
spellingShingle |
Abdon Atangana Seda İğret Araz Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications Advances in Difference Equations Statistical analysis Bell curve Prediction New COVID-19 model Nonlocal operators Optimal control |
author_facet |
Abdon Atangana Seda İğret Araz |
author_sort |
Abdon Atangana |
title |
Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications |
title_short |
Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications |
title_full |
Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications |
title_fullStr |
Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications |
title_full_unstemmed |
Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications |
title_sort |
mathematical model of covid-19 spread in turkey and south africa: theory, methods, and applications |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2020-11-01 |
description |
Abstract A comprehensive study about the spread of COVID-19 cases in Turkey and South Africa has been presented in this paper. An exhaustive statistical analysis was performed using data collected from Turkey and South Africa within the period of 11 March 2020 to 3 May 2020 and 05 March and 3 of May, respectively. It was observed that in the case of Turkey, a negative Spearman correlation for the number of infected class and a positive Spearman correlation for both the number of deaths and recoveries were obtained. This implied that the daily infections could decrease, while the daily deaths and number of recovered people could increase under current conditions. In the case of South Africa, a negative Spearman correlation for both daily deaths and daily infected people were obtained, indicating that these numbers may decrease if the current conditions are maintained. The utilization of a statistical technique predicted the daily number of infected, recovered, and dead people for each country; and three results were obtained for Turkey, namely an upper boundary, a prediction from current situation and lower boundary. The histograms of the daily number of newly infected, recovered and death showed a sign of lognormal and normal distribution, which is presented using the Bell curving method parameters estimation. A new mathematical model COVID-19 comprised of nine classes was suggested; of which a formula of the reproductive number, well-poseness of the solutions and the stability analysis were presented in detail. The suggested model was further extended to the scope of nonlocal operators for each case; whereby a numerical method was used to provide numerical solutions, and simulations were performed for different non-integer numbers. Additionally, sections devoted to control optimal and others dedicated to compare cases between Turkey and South Africa with the aim to comprehend why there are less numbers of deaths and infected people in South Africa than Turkey were presented in detail. |
topic |
Statistical analysis Bell curve Prediction New COVID-19 model Nonlocal operators Optimal control |
url |
https://doi.org/10.1186/s13662-020-03095-w |
work_keys_str_mv |
AT abdonatangana mathematicalmodelofcovid19spreadinturkeyandsouthafricatheorymethodsandapplications AT sedaigretaraz mathematicalmodelofcovid19spreadinturkeyandsouthafricatheorymethodsandapplications |
_version_ |
1724369177553141760 |