Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island

Although it can be complex to integrate variable renewable energy sources such as wind power and photovoltaics into an energy system, the potential benefits are large, as it can help reduce fuel imports, balance the trade, and mitigate the negative impacts in terms of climate change. In order to try...

Full description

Bibliographic Details
Main Authors: Dominik Franjo Dominković, Greg Stark, Bri-Mathias Hodge, Allan Schrøder Pedersen
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/9/2193
Description
Summary:Although it can be complex to integrate variable renewable energy sources such as wind power and photovoltaics into an energy system, the potential benefits are large, as it can help reduce fuel imports, balance the trade, and mitigate the negative impacts in terms of climate change. In order to try to integrate a very large share of variable renewable energy sources into the energy system, an integrated energy planning approach was used, including ice storage in the cooling sector, a smart charging option in the transport sector, and an excess capacity of reverse osmosis technology that was utilised in order to provide flexibility to the energy system. A unit commitment and economic dispatch tool (PLEXOS) was used, and the model was run with both 5 min and 1 h time resolutions. The case study was carried out for a typical Caribbean island nation, based on data derived from measured data from Aruba. The results showed that 78.1% of the final electricity demand in 2020 was met by variable renewable energy sources, having 1.0% of curtailed energy in the energy system. The total economic cost of the modelled energy system was similar to the current energy system, dominated by the fossil fuel imports. The results are relevant for many populated islands and island nations.
ISSN:1996-1073