Study on the Accelerated Aging Test Method in the Development of a Self-Cleaning Topcoat for Cool Roofs

The heat island phenomenon in urban areas has become a problem in the recent years. One measure to overcome this, which has been attracting attention, is painting the cool roof with a paint that has high solar reflectance. However, the solar reflectance has been reported to decrease over time owing...

Full description

Bibliographic Details
Main Authors: Taizo Aoyama, Takeshi Sonoda, Hideki Takebayashi
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/11/6/605
Description
Summary:The heat island phenomenon in urban areas has become a problem in the recent years. One measure to overcome this, which has been attracting attention, is painting the cool roof with a paint that has high solar reflectance. However, the solar reflectance has been reported to decrease over time owing to staining from the paint. Our investigations reveal that a self-cleaning paint, based on an acrylic silicone polymer, is effective in maintaining a high solar reflectance and preventing dirt from adhering. These evaluations have been conducted on the cool roof of an actual building by conducting a pollution test under outdoor exposure conditions. In this study, we investigated an accelerated aging test and reported the results. ASTM D7897-15 (ASTM method) is an accelerated pollution test method for cool roofs, which has been established in the United States. In Japan, a similar accelerated pollution test method exists for antifouling civil engineering materials introduced by the Public Works Research Institute in Japan (PWRI method). The ASTM method and PWRI method were compared by conducting a stain acceleration test using a self-cleaning- and conventional-type cool-roof coating. The substitutability of the exposure test, correlation with the exposure test, performance evaluation of the paint, and the effect of the difference in the pretreatment conditions were verified. The results of these tests were reported.
ISSN:2073-4433