A Parametric Method of Finding Accessory Parameters for the Generalized Schwarz--Christoffel Integrals

An approximate method of finding accessory parameters for the generalized Schwarz--Christoffel integrals has been suggested. The integrals provide conformal mappings of a half-plane onto the polygonal Riemann surfaces with inner branch points. The method is based on including the desired map into a...

Full description

Bibliographic Details
Main Authors: N.N. Nakipov, S.R. Nasyrov
Format: Article
Language:Russian
Published: Kazan Federal University 2016-06-01
Series:Učënye Zapiski Kazanskogo Universiteta: Seriâ Fiziko-Matematičeskie Nauki
Subjects:
Online Access:http://kpfu.ru/portal/docs/F339051467/158_2_phys_mat_5.pdf
id doaj-80a15adaae914fcc8cbda861f1b06d67
record_format Article
spelling doaj-80a15adaae914fcc8cbda861f1b06d672020-11-25T01:50:56ZrusKazan Federal UniversityUčënye Zapiski Kazanskogo Universiteta: Seriâ Fiziko-Matematičeskie Nauki2541-77462500-21982016-06-011582202220A Parametric Method of Finding Accessory Parameters for the Generalized Schwarz--Christoffel IntegralsN.N. Nakipov0S.R. Nasyrov1Kazan Federal University, Kazan, 420008 RussiaKazan Federal University, Kazan, 420008 RussiaAn approximate method of finding accessory parameters for the generalized Schwarz--Christoffel integrals has been suggested. The integrals provide conformal mappings of a half-plane onto the polygonal Riemann surfaces with inner branch points. The method is based on including the desired map into a one-parametric family of conformal mappings of the upper half-plane onto the Riemann surfaces which are obtained from some fixed Riemann surface by cutting it along an elongated polygonal slit. A system of ordinary differential equations for parameters of the Schwarz--Christoffel integrals, i.e., for the preimages of their vertexes and branch points, has been deduced. Application of the method consists in solving a number of successive Cauchy problems describing the process of moving of the end of the slit along the chains of the polygon. The solution obtained in the previous step forms the initial data for the Cauchy problem in the next step. A numeric example illustrating the method has been considered. For univalent mappings, a similar method was first suggested by P.P. Kufarev.http://kpfu.ru/portal/docs/F339051467/158_2_phys_mat_5.pdfSchwarz--Christoffel integralsmultivalent functionsparametric method
collection DOAJ
language Russian
format Article
sources DOAJ
author N.N. Nakipov
S.R. Nasyrov
spellingShingle N.N. Nakipov
S.R. Nasyrov
A Parametric Method of Finding Accessory Parameters for the Generalized Schwarz--Christoffel Integrals
Učënye Zapiski Kazanskogo Universiteta: Seriâ Fiziko-Matematičeskie Nauki
Schwarz--Christoffel integrals
multivalent functions
parametric method
author_facet N.N. Nakipov
S.R. Nasyrov
author_sort N.N. Nakipov
title A Parametric Method of Finding Accessory Parameters for the Generalized Schwarz--Christoffel Integrals
title_short A Parametric Method of Finding Accessory Parameters for the Generalized Schwarz--Christoffel Integrals
title_full A Parametric Method of Finding Accessory Parameters for the Generalized Schwarz--Christoffel Integrals
title_fullStr A Parametric Method of Finding Accessory Parameters for the Generalized Schwarz--Christoffel Integrals
title_full_unstemmed A Parametric Method of Finding Accessory Parameters for the Generalized Schwarz--Christoffel Integrals
title_sort parametric method of finding accessory parameters for the generalized schwarz--christoffel integrals
publisher Kazan Federal University
series Učënye Zapiski Kazanskogo Universiteta: Seriâ Fiziko-Matematičeskie Nauki
issn 2541-7746
2500-2198
publishDate 2016-06-01
description An approximate method of finding accessory parameters for the generalized Schwarz--Christoffel integrals has been suggested. The integrals provide conformal mappings of a half-plane onto the polygonal Riemann surfaces with inner branch points. The method is based on including the desired map into a one-parametric family of conformal mappings of the upper half-plane onto the Riemann surfaces which are obtained from some fixed Riemann surface by cutting it along an elongated polygonal slit. A system of ordinary differential equations for parameters of the Schwarz--Christoffel integrals, i.e., for the preimages of their vertexes and branch points, has been deduced. Application of the method consists in solving a number of successive Cauchy problems describing the process of moving of the end of the slit along the chains of the polygon. The solution obtained in the previous step forms the initial data for the Cauchy problem in the next step. A numeric example illustrating the method has been considered. For univalent mappings, a similar method was first suggested by P.P. Kufarev.
topic Schwarz--Christoffel integrals
multivalent functions
parametric method
url http://kpfu.ru/portal/docs/F339051467/158_2_phys_mat_5.pdf
work_keys_str_mv AT nnnakipov aparametricmethodoffindingaccessoryparametersforthegeneralizedschwarzchristoffelintegrals
AT srnasyrov aparametricmethodoffindingaccessoryparametersforthegeneralizedschwarzchristoffelintegrals
AT nnnakipov parametricmethodoffindingaccessoryparametersforthegeneralizedschwarzchristoffelintegrals
AT srnasyrov parametricmethodoffindingaccessoryparametersforthegeneralizedschwarzchristoffelintegrals
_version_ 1724999348301856768