Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy
Retinal neovascularization (RNV) is an important pathological feature of vitreoretinopathy that can lead to severe vision loss. The purpose of this study was to identify the role of ephrin-A5 (Efna5) in RNV and to explore its mechanism. The expression pattern and biological significance of Efna5 wer...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2020/7161027 |
id |
doaj-80932d36c63047d6a1a14bbf36b8b110 |
---|---|
record_format |
Article |
spelling |
doaj-80932d36c63047d6a1a14bbf36b8b1102020-11-25T03:44:58ZengHindawi LimitedBioMed Research International2314-61332314-61412020-01-01202010.1155/2020/71610277161027Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced RetinopathyWei Du0Lvzhen Huang1Xin Tang2Jiarui Li3Xiaoxin Li4Department of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing, ChinaDepartment of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing, ChinaDepartment of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing, ChinaDepartment of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing, ChinaDepartment of Ophthalmology and Clinical Centre of Optometry, Peking University People’s Hospital, Beijing, ChinaRetinal neovascularization (RNV) is an important pathological feature of vitreoretinopathy that can lead to severe vision loss. The purpose of this study was to identify the role of ephrin-A5 (Efna5) in RNV and to explore its mechanism. The expression pattern and biological significance of Efna5 were investigated in a mouse model of oxygen-induced retinopathy (OIR). The expression of Efna5 and downstream signaling pathway members was determined by RT-PCR, immunofluorescence, immunohistochemistry, and western blot analyses. shRNA was used to knockdown Efna5 in the retina of the OIR mouse model. Retinal flat mounts were performed to evaluate the impact of Efna5 silencing on the RNV process. We found that the Efna5 was greatly upregulated in the retina of OIR mice. Elevated Efna5 mainly colocalized with the retinal vessels and endothelial cells. We then showed that knockdown of Efna5 in OIR mouse retinas using lentivirus-mediated shRNA markedly decreased the expression of Efna5 and reduced the retinal neovascularization and avascular retina area. We further showed hypoxia stimulation dramatically increased both total and phosphorylation levels of ERK1/2 and the phosphorylation levels of Akt in OIR mice. More importantly, knockdown of Efna5 could inhibit the p-Akt and p-ERK signaling pathways. Our results suggested that Efna5 may regulate the RNV. This study suggests that Efna5 was significantly upregulated in the retina of OIR mice and closely involved in the pathological retinal angiogenesis.http://dx.doi.org/10.1155/2020/7161027 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wei Du Lvzhen Huang Xin Tang Jiarui Li Xiaoxin Li |
spellingShingle |
Wei Du Lvzhen Huang Xin Tang Jiarui Li Xiaoxin Li Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy BioMed Research International |
author_facet |
Wei Du Lvzhen Huang Xin Tang Jiarui Li Xiaoxin Li |
author_sort |
Wei Du |
title |
Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy |
title_short |
Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy |
title_full |
Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy |
title_fullStr |
Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy |
title_full_unstemmed |
Ephrin-A5 Is Involved in Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy |
title_sort |
ephrin-a5 is involved in retinal neovascularization in a mouse model of oxygen-induced retinopathy |
publisher |
Hindawi Limited |
series |
BioMed Research International |
issn |
2314-6133 2314-6141 |
publishDate |
2020-01-01 |
description |
Retinal neovascularization (RNV) is an important pathological feature of vitreoretinopathy that can lead to severe vision loss. The purpose of this study was to identify the role of ephrin-A5 (Efna5) in RNV and to explore its mechanism. The expression pattern and biological significance of Efna5 were investigated in a mouse model of oxygen-induced retinopathy (OIR). The expression of Efna5 and downstream signaling pathway members was determined by RT-PCR, immunofluorescence, immunohistochemistry, and western blot analyses. shRNA was used to knockdown Efna5 in the retina of the OIR mouse model. Retinal flat mounts were performed to evaluate the impact of Efna5 silencing on the RNV process. We found that the Efna5 was greatly upregulated in the retina of OIR mice. Elevated Efna5 mainly colocalized with the retinal vessels and endothelial cells. We then showed that knockdown of Efna5 in OIR mouse retinas using lentivirus-mediated shRNA markedly decreased the expression of Efna5 and reduced the retinal neovascularization and avascular retina area. We further showed hypoxia stimulation dramatically increased both total and phosphorylation levels of ERK1/2 and the phosphorylation levels of Akt in OIR mice. More importantly, knockdown of Efna5 could inhibit the p-Akt and p-ERK signaling pathways. Our results suggested that Efna5 may regulate the RNV. This study suggests that Efna5 was significantly upregulated in the retina of OIR mice and closely involved in the pathological retinal angiogenesis. |
url |
http://dx.doi.org/10.1155/2020/7161027 |
work_keys_str_mv |
AT weidu ephrina5isinvolvedinretinalneovascularizationinamousemodelofoxygeninducedretinopathy AT lvzhenhuang ephrina5isinvolvedinretinalneovascularizationinamousemodelofoxygeninducedretinopathy AT xintang ephrina5isinvolvedinretinalneovascularizationinamousemodelofoxygeninducedretinopathy AT jiaruili ephrina5isinvolvedinretinalneovascularizationinamousemodelofoxygeninducedretinopathy AT xiaoxinli ephrina5isinvolvedinretinalneovascularizationinamousemodelofoxygeninducedretinopathy |
_version_ |
1715126824537686016 |