Holographic quarkyonic matter

Abstract We point out a new configuration in the Witten-Sakai-Sugimoto model, allowing baryons in the pointlike approximation to coexist with fundamental quarks. The resulting phase is a holographic realization of quarkyonic matter, which is predicted to occur in QCD at a large number of colors, and...

Full description

Bibliographic Details
Main Authors: Nicolas Kovensky, Andreas Schmitt
Format: Article
Language:English
Published: SpringerOpen 2020-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP09(2020)112
Description
Summary:Abstract We point out a new configuration in the Witten-Sakai-Sugimoto model, allowing baryons in the pointlike approximation to coexist with fundamental quarks. The resulting phase is a holographic realization of quarkyonic matter, which is predicted to occur in QCD at a large number of colors, and possibly plays a role in real-world QCD as well. We find that holographic quarkyonic matter is chirally symmetric and that, for large baryon chemical potentials, it is energetically preferred over pure nuclear matter and over pure quark matter. The zero-temperature transition from nuclear matter to the quarkyonic phase is of first order in the chiral limit and for a realistic pion mass. For pion masses far beyond the physical point we observe a quark-hadron continuity due to the presence of quarkyonic matter.
ISSN:1029-8479