Mulberry Fruit Extract Ameliorates Nonalcoholic Fatty Liver Disease (NAFLD) through Inhibition of Mitochondrial Oxidative Stress in Rats

Mulberry is known to have pharmacological effects against cholesterol, obesity, and dyslipidemia. Many studies have revealed that mulberry leaf possesses hepatoprotective properties against nonalcoholic fatty liver disease (NAFLD); however, mulberry fruit is less studied in this context. Therefore,...

Full description

Bibliographic Details
Main Authors: Dong Kwon Yang, Dong-Gyu Jo
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Evidence-Based Complementary and Alternative Medicine
Online Access:http://dx.doi.org/10.1155/2018/8165716
Description
Summary:Mulberry is known to have pharmacological effects against cholesterol, obesity, and dyslipidemia. Many studies have revealed that mulberry leaf possesses hepatoprotective properties against nonalcoholic fatty liver disease (NAFLD); however, mulberry fruit is less studied in this context. Therefore, this study aimed to investigate the preventive effects of mulberry fruit against high fat diet- (HFD-) induced NAFLD. To evaluate the effects of mulberry fruit on NAFLD, two doses of mulberry fruit ethanol extracts [MB, 100, and 200 mg/kg BW (body weight)] were given to HFD-fed rats for 10 weeks. MB dramatically prevented liver damage as shown by biochemical analysis of the liver injury markers, alanine transaminase, and aspartate transaminase. MB treatment significantly inhibited the increased levels of total cholesterol, triacylglycerol, and low-density lipoprotein-cholesterol but restored the level of high-density lipoprotein-cholesterol in HFD-fed rats. Notably, histological analysis of liver tissues demonstrated that MB substantially ameliorated lipid accumulation. Expression of cholesterol-regulating genes was also suppressed by MB treatment. For its underlying mechanisms, MB suppressed hepatic reactive oxygen species (ROS) overproduction and mitochondrial oxidative stress in HFD-fed rats. MB potentially protects liver tissue against NAFLD by inhibition of mitochondrial oxidative stress, suggesting its possible use as a therapeutic agent for treatment of NAFLD.
ISSN:1741-427X
1741-4288