AN THE ECUATION Re [(x-a)f(x)]=0, fєS
Let S be the class of functions f(z)=z+a2z2…, f(0)=0, f′(0)=1 which are regular and univalent in theunit disk |z|<1.For 0≤x≤a≤1 we consider the equationRe [(x-a)f(x)]=0, fєS. and Re [(x3-a3)f(x)]=0. (1)Denote φ(x)=Re [(x-a)f(x)]. Because φ(0)=0 and φ(a)=0 it follows that there is x0є(0,a) such th...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Academica Brancusi
2012-05-01
|
Series: | Fiabilitate şi Durabilitate |
Subjects: | |
Online Access: | http://www.utgjiu.ro/rev_mec/mecanica/pdf/2012-01.Supliment/68_Miodrag%20Iovanov.pdf |
id |
doaj-802d71dc32e2403888094dea8ab06f6c |
---|---|
record_format |
Article |
spelling |
doaj-802d71dc32e2403888094dea8ab06f6c2020-11-24T23:21:53ZengAcademica BrancusiFiabilitate şi Durabilitate1844-640X2012-05-011 supliment10388391AN THE ECUATION Re [(x-a)f(x)]=0, fєSMiodrag IOVANOVLet S be the class of functions f(z)=z+a2z2…, f(0)=0, f′(0)=1 which are regular and univalent in theunit disk |z|<1.For 0≤x≤a≤1 we consider the equationRe [(x-a)f(x)]=0, fєS. and Re [(x3-a3)f(x)]=0. (1)Denote φ(x)=Re [(x-a)f(x)]. Because φ(0)=0 and φ(a)=0 it follows that there is x0є(0,a) such that:φ′( x0)=0.The aim of this paper is to find max{x| φ′( x)=0}.If x is max{x| φ′(x)=0}, then for x> x the equation φ′( x)=0 does not have real roots. Since S is acompact class, there exists x .This problem was first proposed by Petru T. Mocanu in [2]. We will determine x by using thevariational method of Schiffer-Goluzin [1].http://www.utgjiu.ro/rev_mec/mecanica/pdf/2012-01.Supliment/68_Miodrag%20Iovanov.pdffunctionvariationfinite number |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Miodrag IOVANOV |
spellingShingle |
Miodrag IOVANOV AN THE ECUATION Re [(x-a)f(x)]=0, fєS Fiabilitate şi Durabilitate function variation finite number |
author_facet |
Miodrag IOVANOV |
author_sort |
Miodrag IOVANOV |
title |
AN THE ECUATION Re [(x-a)f(x)]=0, fєS |
title_short |
AN THE ECUATION Re [(x-a)f(x)]=0, fєS |
title_full |
AN THE ECUATION Re [(x-a)f(x)]=0, fєS |
title_fullStr |
AN THE ECUATION Re [(x-a)f(x)]=0, fєS |
title_full_unstemmed |
AN THE ECUATION Re [(x-a)f(x)]=0, fєS |
title_sort |
the ecuation re [(x-a)f(x)]=0, fєs |
publisher |
Academica Brancusi |
series |
Fiabilitate şi Durabilitate |
issn |
1844-640X |
publishDate |
2012-05-01 |
description |
Let S be the class of functions f(z)=z+a2z2…, f(0)=0, f′(0)=1 which are regular and univalent in theunit disk |z|<1.For 0≤x≤a≤1 we consider the equationRe [(x-a)f(x)]=0, fєS. and Re [(x3-a3)f(x)]=0. (1)Denote φ(x)=Re [(x-a)f(x)]. Because φ(0)=0 and φ(a)=0 it follows that there is x0є(0,a) such that:φ′( x0)=0.The aim of this paper is to find max{x| φ′( x)=0}.If x is max{x| φ′(x)=0}, then for x> x the equation φ′( x)=0 does not have real roots. Since S is acompact class, there exists x .This problem was first proposed by Petru T. Mocanu in [2]. We will determine x by using thevariational method of Schiffer-Goluzin [1]. |
topic |
function variation finite number |
url |
http://www.utgjiu.ro/rev_mec/mecanica/pdf/2012-01.Supliment/68_Miodrag%20Iovanov.pdf |
work_keys_str_mv |
AT miodragiovanov antheecuationrexafx0fês AT miodragiovanov theecuationrexafx0fês |
_version_ |
1725569769625616384 |