AN THE ECUATION Re [(x-a)f(x)]=0, fєS

Let S be the class of functions f(z)=z+a2z2…, f(0)=0, f′(0)=1 which are regular and univalent in theunit disk |z|<1.For 0≤x≤a≤1 we consider the equationRe [(x-a)f(x)]=0, fєS. and Re [(x3-a3)f(x)]=0. (1)Denote φ(x)=Re [(x-a)f(x)]. Because φ(0)=0 and φ(a)=0 it follows that there is x0є(0,a) such th...

Full description

Bibliographic Details
Main Author: Miodrag IOVANOV
Format: Article
Language:English
Published: Academica Brancusi 2012-05-01
Series:Fiabilitate şi Durabilitate
Subjects:
Online Access:http://www.utgjiu.ro/rev_mec/mecanica/pdf/2012-01.Supliment/68_Miodrag%20Iovanov.pdf
id doaj-802d71dc32e2403888094dea8ab06f6c
record_format Article
spelling doaj-802d71dc32e2403888094dea8ab06f6c2020-11-24T23:21:53ZengAcademica BrancusiFiabilitate şi Durabilitate1844-640X2012-05-011 supliment10388391AN THE ECUATION Re [(x-a)f(x)]=0, fєSMiodrag IOVANOVLet S be the class of functions f(z)=z+a2z2…, f(0)=0, f′(0)=1 which are regular and univalent in theunit disk |z|<1.For 0≤x≤a≤1 we consider the equationRe [(x-a)f(x)]=0, fєS. and Re [(x3-a3)f(x)]=0. (1)Denote φ(x)=Re [(x-a)f(x)]. Because φ(0)=0 and φ(a)=0 it follows that there is x0є(0,a) such that:φ′( x0)=0.The aim of this paper is to find max{x| φ′( x)=0}.If x is max{x| φ′(x)=0}, then for x> x the equation φ′( x)=0 does not have real roots. Since S is acompact class, there exists x .This problem was first proposed by Petru T. Mocanu in [2]. We will determine x by using thevariational method of Schiffer-Goluzin [1].http://www.utgjiu.ro/rev_mec/mecanica/pdf/2012-01.Supliment/68_Miodrag%20Iovanov.pdffunctionvariationfinite number
collection DOAJ
language English
format Article
sources DOAJ
author Miodrag IOVANOV
spellingShingle Miodrag IOVANOV
AN THE ECUATION Re [(x-a)f(x)]=0, fєS
Fiabilitate şi Durabilitate
function
variation
finite number
author_facet Miodrag IOVANOV
author_sort Miodrag IOVANOV
title AN THE ECUATION Re [(x-a)f(x)]=0, fєS
title_short AN THE ECUATION Re [(x-a)f(x)]=0, fєS
title_full AN THE ECUATION Re [(x-a)f(x)]=0, fєS
title_fullStr AN THE ECUATION Re [(x-a)f(x)]=0, fєS
title_full_unstemmed AN THE ECUATION Re [(x-a)f(x)]=0, fєS
title_sort the ecuation re [(x-a)f(x)]=0, fєs
publisher Academica Brancusi
series Fiabilitate şi Durabilitate
issn 1844-640X
publishDate 2012-05-01
description Let S be the class of functions f(z)=z+a2z2…, f(0)=0, f′(0)=1 which are regular and univalent in theunit disk |z|<1.For 0≤x≤a≤1 we consider the equationRe [(x-a)f(x)]=0, fєS. and Re [(x3-a3)f(x)]=0. (1)Denote φ(x)=Re [(x-a)f(x)]. Because φ(0)=0 and φ(a)=0 it follows that there is x0є(0,a) such that:φ′( x0)=0.The aim of this paper is to find max{x| φ′( x)=0}.If x is max{x| φ′(x)=0}, then for x> x the equation φ′( x)=0 does not have real roots. Since S is acompact class, there exists x .This problem was first proposed by Petru T. Mocanu in [2]. We will determine x by using thevariational method of Schiffer-Goluzin [1].
topic function
variation
finite number
url http://www.utgjiu.ro/rev_mec/mecanica/pdf/2012-01.Supliment/68_Miodrag%20Iovanov.pdf
work_keys_str_mv AT miodragiovanov antheecuationrexafx0fês
AT miodragiovanov theecuationrexafx0fês
_version_ 1725569769625616384